西风和季风影响区冰川雪中细菌数量和群落组成与气候环境关系

日期:2019.12.16 阅读数:18

【类型】期刊

【作者】刘晓波,邢婷婷,刘勇勤,徐柏青,赵华标,王宁练,沈亮(中国科学院加德满都科教中心;中国科学院青藏高原研究所高寒生态学与生物多样性重点实验室;中国科学院大学;中国科学院青藏高原地球科学卓越中心;中国科学院青藏高原研究所青藏高原环境变化与地表过程重点实验室;西北大学城市与环境学院)

【作者单位】中国科学院加德满都科教中心;中国科学院青藏高原研究所高寒生态学与生物多样性重点实验室;中国科学院大学;中国科学院青藏高原地球科学卓越中心;中国科学院青藏高原研究所青藏高原环境变化与地表过程重点实验室;西北大学城市与环境学院

【刊名】冰川冻土

【关键词】 青藏高原;冰川;细菌;群落;多样性;气候环境

【资助项】国家自然科学基金项目(41425004,41371084,41190084,41571076,41371089,41201059)

【ISSN号】1000-0240

【页码】P197-214

【年份】2019

【期号】第1期

【期刊卷】1;|7;|8;|2

【摘要】青藏高原冰川是全球变化研究的热点地区,但对高原冰雪细菌与气候环境之间的关系还缺乏研究。选取西风影响下的新疆慕士塔格冰川、木吉冰川和印度季风影响下的尼泊尔雅拉冰川进行冰雪细菌研究,以揭示西风和季风影响区冰川雪中细菌丰度和群落组成特征以及细菌与区域气候环境的关系。研究发现:受西风影响的慕士塔格冰川和木吉冰川的主要细菌类群为Bacteroidetes和Betaproteobacteria;受印度季风影响的雅拉冰川的细菌优势类群为Betaproteobacteria和Cyanobacteria。表明西风和季风影响区冰川雪中细菌具有不同的群落组成。此外,通过比对16S rRNA,发现三个冰川分离的细菌与分离自海洋、湖泊、土壤、沙漠等寒冷环境的细菌具有很高的相似度。位于西风带的慕士塔格和木吉冰川雪中细菌Shannon指数高于位于印度季风区的雅拉冰川。印度季风带的雅拉冰川细菌群落组成受季节的影响明显而西风带的慕士塔格冰川则受季节影响比较小。

【全文文献传递

西风和季风影响区冰川雪中细菌数量和群落组成与气候环境关系

西风和季风影响区冰川雪中细菌数量和群落组成与气候环境关系

刘晓波1,2, 邢婷婷2,5, 刘勇勤3,4,5, 徐柏青3,4,5, 赵华标3,4, 王宁练6, 沈亮4,5

(1.中国科学院 加德满都科教中心, 尼泊尔 加德满都 44618; 2.中国科学院 青藏高原研究所 高寒生态学与生物多样性重点实验室, 北京 100101; 3.中国科学院 青藏高原地球科学卓越中心, 北京 100101; 4.中国科学院 青藏高原研究所 青藏高原环境变化与地表过程重点实验室, 北京 100101; 5.中国科学院大学, 北京 100049;6.西北大学 城市与环境学院, 陕西 西安 710069)

青藏高原冰川是全球变化研究的热点地区, 但对高原冰雪细菌与气候环境之间的关系还缺乏研究。选取西风影响下的新疆慕士塔格冰川、 木吉冰川和印度季风影响下的尼泊尔雅拉冰川进行冰雪细菌研究, 以揭示西风和季风影响区冰川雪中细菌丰度和群落组成特征以及细菌与区域气候环境的关系。研究发现: 受西风影响的慕士塔格冰川和木吉冰川的主要细菌类群为Bacteroidetes和Betaproteobacteria; 受印度季风影响的雅拉冰川的细菌优势类群为Betaproteobacteria和Cyanobacteria。表明西风和季风影响区冰川雪中细菌具有不同的群落组成。此外, 通过比对16S rRNA, 发现三个冰川分离的细菌与分离自海洋、 湖泊、 土壤、 沙漠等寒冷环境的细菌具有很高的相似度。位于西风带的慕士塔格和木吉冰川雪中细菌Shannon指数高于位于印度季风区的雅拉冰川。印度季风带的雅拉冰川细菌群落组成受季节的影响明显而西风带的慕士塔格冰川则受季节影响比较小。

关键词 青藏高原; 冰川; 细菌; 群落; 多样性; 气候环境

中图分类号 Q938.1+1

文献标志码:A

文章编号:1000-0240(2019)01-0197-18

DOI:10.7522/j.issn.1000-0240.2019.0010

LIU Xiaobo, XING Tingting, LIU Yongqin, et al. Bacterial abundance and community composition of glacier snow in Western and Monsoon areas and their relations to climate environment[J]. Journal of Glaciology and Geocryology, 2019, 41(1): 197-214. [刘晓波, 邢婷婷, 刘勇勤, 等. 西风和季风影响区冰川雪中细菌数量和群落组成与气候环境关系[J]. 冰川冻土, 2019, 41(1): 197-214.]

收稿日期 2018-05-06;

修订日期:2018-11-16

基金项目: 国家自然科学基金项目(41425004; 41371084; 41190084; 41571076; 41371089; 41201059)资助

作者简介: 刘晓波(1981-), 山东招远人, 助理研究员, 2010年在中国科学院青藏高原研究所获博士学位, 从事青藏高原冰川微生物及气候研究. E-mail: xbliu@itpcas.ac.cn

通信作者: 刘勇勤, E-mail: yqliu@itpcas.ac.cn.

0 引言

被称为“第三极”的青藏高原是影响全球气候环境变化的关键区之一, 拥有除南北极外中低纬度地区面积最大的冰川, 总面积达59 406 km2, 占全球中低纬度冰川面积约50%[1]。冰川是众所周知的全球变化研究的重要载体, 对全球气候变化极为敏感[2]。微生物作为冰川中少有的生命体之一, 对气候环境有着更为敏感的响应, 近几十年得到日益的关注和研究。南北极和青藏高原冰芯中发现了丰富多样且与气候环境有很好对应的微生物[3], 为冰芯古气候研究拓展了新的代用指标。但在研究冰芯微生物与气候之间的关系过程中, 也发现了冰芯中的细菌与气候环境之间还没有建立明确的关联, 需要对冰川雪中微生物与气候关系现代过程作进一步的研究。

南北极和中纬度冰川雪中微生物的研究主要集中在对其来源、 数量、 群落结构以及地球化学循环的研究[4-8]。冰川雪中的微生物主要来自大气沉降, 源自土壤、 湖泊、 植物、 海洋各种环境的微生物被搬运到冰川并沉降于冰川表面[9-11]。冰川雪中微生物可以是由大气环流远途输送[12], 但当地寒冷环境中的耐冷微生物也是积雪中微生物的重要来源, 并有可能掩盖积雪中微生物全球来源的信号[10,12]

对南极史考特站表层雪、 北极斯瓦尔巴特群岛、 日本Tateyama山、 我国新疆东天山和奎屯河上游51号冰川、 云南玉龙雪山、 四川海螺沟冰川、 青藏高原卓奥友、 果曲、 扎当、 东绒布、 帕隆4号、 枪勇和老虎沟冰川雪中细菌的研究显示这些地区表层雪中细菌的总数目在1×102~1×105 cells·mL-1, 整体上呈现中纬度高山地区的细菌数量高于南北极, 而在青藏高原北部冰川细菌数量高于南部冰川[3,7,11-25]

冰川雪中的主要细菌类群为Bacteroidetes, Proteobacteria, Actinobacteria, Cyanobacteria, Acidobacteria, Chloroflexi, Deinococcus-Thermus, Firmicutes, Planctomycetes和Verrucomicrobia等[13-22]。青藏高原卓奥友雪样中细菌分别属于Actinobacteria, Bacteroidetes, Firmicutes和α, β, γ-proteobacteria, 并以Actinobacteria为主[23]。从东天山分离的7株菌则属于Actinobacteria, Firmicutes和α, β-proteobacteria 这三个门并以β-proteobacteria为主[24]。玉龙雪山雪坑中可培养细菌数量呈随深度增加的趋势, 分离的可培养细菌属于Actinobacteria, Firmicutes和Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, 以Proteobacteria(Alphaproteobacteria)为优势类群且占52%[25]。对扎当和蒙达岗日冰川雪坑中可培养细菌的群落结构分析发现, 其细菌优势类群分别以Firmicutes和Actinobacteria为主[26]。由此可见冰川积雪中可培养细菌的群落结构受到各个冰川所处的地理位置的影响。

冰川雪中的细菌不仅数量可观, 群落结构多样, 而且还具有地球化学循环活性和可培养活性, 对北极斯瓦尔巴特群岛微生物的研究发现, 微生物群落随着氮循环路径的改变而呈现动态转变, 且Roseomonas(玫瑰单胞菌)和硝酸盐浓度有关, 而Streptomyces(茎菌属)与铵盐浓度有关[27]。对南极史考特站表层雪的研究发现, 在-12 ℃和-17 ℃环境温度下都存在微生物的代谢活动[7]; 对扎当和蒙达岗日雪坑中可培养细菌研究显示这些细菌主要是耐冷菌, 具有较宽的温度范围且大部分细菌能够产生色素[26]

冰川雪中微生物与气候环境之间的关系研究还不多, 其主要研究成果集中于中纬度地区高山冰川。对青藏高原果曲、 扎当、 珠峰东绒布和帕隆4号冰川雪的研究显示细菌数量和多样性受到粉尘及周边自然环境的影响, 高原北部冰川相对靠近亚洲中部粉尘中心且沙尘暴频繁, 导致其积雪中细菌数量高于南部。温度较低的北部果曲冰川细菌多来自寒冷地区的土壤, 而温暖的南部帕隆4号冰川积雪中细菌则多来源于植物, 海拔较高的东绒布冰川其则细菌多来源于海洋等水环境, 青藏高原东绒布冰川季风季节细菌数量相对较多而果曲冰川则发生在非季风季节[13,19]。新疆51号冰川积雪不同深度细菌多样性和数量不同, 细菌多样性沿深度的变化是由于细菌的生长导致的, 说明细菌沉降到冰川上之后发生的一系列环境变化过程对细菌在冰川上的分布有很大的影响[28]。海螺沟和东绒布冰川积雪中细菌的多样性和数量受到冰川的海拔及其所处的大气环流的影响。海拔较高的东绒布冰川积雪中细菌源区更远, 而大气环流复杂的海螺沟则具备最高的多样性和数量, 比如老虎沟冰川细菌归为4个类群(Alphaproteobacteria, Betaproteobacteria, Bacteroidetes, Firmicutes和Actinobacteria), 海螺沟和东绒布冰川则只有三个类群, 分别是Alphaproteobacteria, Betaproteobacteria, Bacteroidetes和Actinobacteria以及Betaproteobacteria, Firmicutes和Actinobacteria[29]

青藏高原是西风带与季风带两大环流系统的交汇区, 两大环流系统共同影响着青藏高原的气候与环境。印度季风从海洋带来大量温暖湿润的水汽及海洋气溶胶, 西风则从高亚洲地区带来干冷的空气和陆源粉尘。青藏高原冰川上的微生物对这两大环流系统有着怎样的响应目前还不清楚, 因此我们分别在西风和季风影响区选取共三条典型的冰川, 西风影响下的我国新疆的慕士塔格冰川、 木吉冰川和季风影响下的尼泊尔雅拉冰川, 进行雪冰微生物与气候环境关系的研究, 以回答两个问题: 1、 西风和季风影响区冰川雪中微生物是否具有不同的数量和群落组成? 2、 这些冰川雪中微生物与气候环境有着怎么样的关系?

1材料和方法

1.1样品采集

在西风和季风影响区选取三条典型的冰川, 分别是西风影响下的新疆慕士塔格和木吉冰川、 印度季风影响下的尼泊尔雅拉冰川(图1)具体采样位置和采样点如表1所示。慕士塔格冰川是一条典型的大陆型山地冰川, 冰川面积2.5 km2, 冰川长7.3 km。木吉冰川位于木吉山, 同属西昆仑山脉, 也是典型的大陆型山地冰川, 冰川面积3.98 km2, 冰川长1.5 km, 海拔约5 000 m。尼泊尔雅拉冰川是一条典型的海洋型山谷冰川, 冰川面积12.75 km2, 冰川长1.5 km, 海拔约5 500 m。

图1慕士塔格冰川、 木吉冰川及雅拉冰川地理位置
Fig.1 The location of the Muztagh Ata Glacier, Muji Glacier and Yala Glacier

冰雪微生物样主要是采集表层雪及雪坑雪样, 样品装入预先清洗并灭菌的Nalgene瓶中, 冷冻保存。穿洁净服戴无菌手套进行所有操作以防止污染。具体采用方案如下: 慕士塔格冰川按不同海拔和深度采集4个样品, 海拔5 288 m采集夏季表层雪样品MZ-1, 6 200 m采集夏季表层雪样品MZ4, 海拔6 000 m采集91~120 cm, 121~140 cm深度冬季雪样品MZ3-2, MZ3-3。木吉冰川按照不同海拔采集4个夏季表层雪样品, 分别是5 300 m的MJ-1, 5 230 m的MJ-2, 5 170 m的MJ-3和5 100 m的MJ-4。雅拉冰川按照季节采集5个样品, 分别是季风季节的YAS1-3, YAS1-5和非季风季节的YAS1-1, YAS3和YAS1-4(表1)。

1.2细菌16S rRNA 基因文库的建立

将冰川雪从-20 ℃冰箱中取出放置在4 ℃下缓慢融化, 将约1 L融化后的水样用0.22 μm无菌Millipore微孔滤膜过滤。将膜放入离心管中, 加入GTE buffer(50 mM葡萄糖, 25 mM Tris, 25 mM Tris-HCl, 10 mM EDTA, pH 8.0)及溶菌酶(终浓度1 mg·mL-1), 置于37 ℃水中, 水浴两小时后将液体转入一支新的离心管, 其中加入10%的SDS、 10 μL蛋白酶K(终浓度0.2 mg·mL-1)和5 M 的NaCl, 置于53 ℃水中, 水浴后加入相同体积的酚∶氯仿∶异戊醇(25∶24∶1, v∶v∶v)抽提, 待离心后只取上清加入等体积的氯仿∶异戊醇(24∶1, v∶v), 离心后加入2/3体积的异丙醇置于-20 ℃过夜沉淀。取出后高速离心, 弃上清, 加入70%预冷的乙醇清洗, 弃上清室温下风干后加入TE buffer将DNA溶解, -20 ℃下保存[30]。所有试剂均为新鲜配置, 高压灭菌或过滤除菌。

以细菌通用引物27f(5′-AGAGTTTGATCTGGCTCAG-3′)和1392r(5′-ACG GGC GGT GTG TRC-3′)对样品进行扩增。PCR反应体系(30 μL)含如下成分: 1 μL DNA模板, 3 μL Buffer, 1.8 μL dNTP, 正反向引物各0.5 μL和0.2 μL La Taq DNA聚合酶(宝生物工程大连有限公司)。PCR扩增条件: 94 ℃预变性5 min后, 30个循环为94 ℃变性30 s, 55 ℃复性1 min, 72 ℃延伸1 min, 最后在72 ℃延伸10 min。将灭菌水用同样方法过膜后提取DNA并扩增, 用作阴性对照。

将PCR产物用DNA纯化试剂盒(宝生物工程大连有限公司)纯化后, 连接克隆到pMD18-T载体(宝生物工程大连有限公司), 并转入E.coli DH5α中, 建立16S rRNA基因文库。在每个基因文库中随机挑取75~100个克隆测序。所有测序在上海英骏生物技术有限公司ABI 3730测序仪上完成。测序反应为一个反应, 每条序列的长度为600~700 bp。

表1研究冰川具体采样点信息
Table 1 Information of sampling sites of Muztagh Ata glacier, Muji Glacier and Yala Glacier

冰川名称冰川位置采样点海拨样品号样品深度沉降季节慕士塔格39°17′ N, 75°06′ E5 228 mMZ-1表层雪夏季6 200 mMZ4表层雪夏季6 000 mMZ3-291~120 cm冬季6 000 mMZ3-3121~140 cm冬季木吉39°10′ N, 73°45′ E5 300 mMJ-1表层雪夏季5 230 mMJ-2表层雪夏季5 170 mMJ-3表层雪夏季5 100 mMJ-4表层雪夏季雅拉28°14′ N, 85°37′ E5 504 mYAS1-10~20 cm非季风节5 504 mYAS1-350~70 cm季风节5 504 mYAS1-480~100 cm非季风节5 504 mYAS1-5110~180 cm季风节5 300 mYAS-3表层雪非季风节

所获得序列首先通过嵌合子检测程序CHIMERA_CHECK检测是否为嵌合子序列。在GenBank数据库(http://www.ncbi.nlm.nih.gov/blast)和Ribosomal Database Project 9.0数据库(http://rdp.cme.msu.edu)中与已知细菌的16S rDNA基因序列进行比较, 在RDP数据库中按置信度>80%的标准确定序列的归属。多样性指数通过统计软件PAST(http://folk.uio.no/ohammer/past)计算得到。

2结果与讨论

2.1冰川雪中微生物的群落组成和差异

慕士塔格冰川、 木吉冰川和雅拉冰川冰雪微生物的16S rRNA克隆文库, 共检测得到392个克隆子, 根据0.03的标准使用DOTUR软件进行聚类分析再在GenBank数据库中进行blast分析。

慕士塔格冰川雪细菌属于Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Cyanobacteria, Actinobacteria, Bacteroidetes, Firmicutes, Acidobacteria, Deinococcus-Thermus, Acidobacteria, Gemmatimonadetes, TM7和Verrucomicrobia这13个门类。以Bacteroidetes, Betaproteobacteria和Cyanobacteria为主要类群, 所占比例分别为35%, 24%和14%(图2)。慕士塔格冰川细菌中鉴定到属水平的细菌占细菌总数的56.9%, 其中Hymenobacter属、 GpI属及Spirosoma属细菌分别占慕士塔格冰川菌种已知属水平细菌数的14.7%、 8.4%和6.3%(表2)。

木吉冰川雪细菌属于Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Cyanobacteria, Actinobacteria, Bacteroidetes, Firmicutes, Acidobacteria和TM7这9个类群。以Betaproteobacteria, Bacteroidetes和Cyanobacteria为主要类群, 所占比例分别为36%, 34%和14%(图2)。木吉冰川中鉴定到属水平的细菌占细菌总数的61.2%, 其中主要优势属分别Hymenobacter(21.7%),Polaromonas(16.7%),Ferruginibacter(10%)(表3)。

表2慕士塔格冰川雪中细菌Genbank比对最相似菌株结果
Table 2The most similar blast result in Genbank of bacteria isolated from Muztagh Ata glacier

样号克隆数门属相似度GeneBank分离环境分类MZ-1-1061AcidobacteriaGp496%FJ895045土壤土壤MZ3-2-0771AcidobacteriaGp499%HQ333336雪寒冷环境MZ3-3-0211AcidobacteriaGp499%JF268845大气MZ3-3-0411AcidobacteriaGp498%FJ028696岩石寒冷环境MZ-1-12Actinobacteriaunclassified99%HQ534340南极海水水环境MZ3-2-0011ActinobacteriaRubrobacter99%JN225539岩石MZ3-2-0171ActinobacteriaMicrolunatus98%JN178181土壤土壤MZ3-2-0331Actinobacteriaunclassified99%EF507007土壤土壤MZ3-2-0353Actinobacteriaunclassified98%HQ910322土壤土壤MZ3-2-0582Actinobacteriaunclassified99%AY250882地衣水环境MZ3-2-0681Actinobacteriaunclassified97%EF018595根际植物MZ3-2-0702ActinobacteriaArthrobacter99%HQ690898海水水环境MZ3-2-0911ActinobacteriaDietzia99%DQ337512污水池水环境MZ3-2-1121ActinobacteriaLeifsonia100%HM224472冻土寒冷环境MZ3-3-0021ActinobacteriaIlumatobacter99%AJ852267幼虫MZ3-3-0061ActinobacteriaMarmoricola99%AB657160土壤土壤MZ3-3-0101ActinobacteriaAgrococcus99%HE617665水水环境MZ3-3-0301ActinobacteriaKocuria98%JN637311冰川土壤寒冷环境

MZ3-3-0321Actinobacteriaunclassified100%DQ166172冻土寒冷环境MZ3-3-0341Actinobacteriaunclassified95%HM241002沙漠MZ3-3-0362ActinobacteriaFriedmanniella98%JF178687MZ3-3-0381Actinobacteriaunclassified99%JF177236MZ3-3-0481Actinobacteriaunclassified96%GQ396895土壤土壤MZ3-3-0497ActinobacteriaFriedmanniella99%NR028884南极湖泊水环境MZ3-3-0601Actinobacteriaunclassified98%AF408966土壤土壤MZ3-3-0641ActinobacteriaIamia100%EF220511土壤土壤MZ3-3-0651Actinobacteriaunclassified99%EF220800土壤土壤MZ3-3-1011Actinobacteriaunclassified94%EU442976纳木错湖水环境MZ-4-0101ActinobacteriaRubrobacter99%JF417843煤层MZ-4-0351Actinobacteriaunclassified98%FM997999根际土壤土壤MZ-4-0412Actinobacteriaunclassified100%JF174850皮肤MZ-4-0612ActinobacteriaCellulomonas98%NR044526大气MZ-4-0811ActinobacteriaMarmoricola100%JF114904皮肤MZ-4-1001ActinobacteriaSanguibacter99%JN638048冰寒冷环境MZ-1-0291α-Devosia99%FR691412南极湖水水环境MZ-2-1243α-unclassified99%EU131001水水环境MZ3-2-0101α-unclassified96%JN568827岩石MZ3-2-0261α-unclassified98%AY571829土壤土壤MZ3-2-0341α-unclassified92%AY136096湖泊水环境MZ3-2-03611α-unclassified99%AM940870北极土壤寒冷环境MZ3-2-0903α-Rubellimicrobium95%NR044275土壤土壤MZ3-3-0091α-Phyllobacterium99%HQ540583植物植物MZ3-3-0206α-Sphingomonas98%JF459935水水环境MZ3-3-0431α-Sphingomonas99%AB220140淡水水环境MZ3-3-0681α-Roseomonas99%AJ968702根际植物MZ3-3-0831α-Rubellimicrobium97%FM874293灰尘MZ3-3-0851α-Sphingosinicella97%AB429069海水水环境MZ3-3-0941α-unclassified99%EU867314植物植物MZ3-3-1031α-Aurantimonas99%JN662532冰川寒冷环境MZ-4-0031α-Sphingosinicella93%AB159609湖泊水环境MZ-4-0151α-unclassified100%AJ252588根际土壤土壤MZ-4-0581α-Sphingomonas99%AY521009土壤土壤MZ-4-0791α-Roseomonas99%JN377653青藏高原MZ-4-0891α-unclassified99%AB600133植物植物MZ-4-0931α-unclassified99%GQ484865大气MZ-4-0971α-Rubellimicrobium99%GU109478土壤土壤MZ-1-0011BacteroidetesHymenobacter96%FR682731土壤土壤MZ-1-0122BacteroidetesFlavobacterium98%FJ424497海水水环境MZ-1-0211BacteroidetesHymenobacter95%NR042172大气MZ-1-0311Bacteroidetesunclassified95%HQ230230雪寒冷环境

MZ-1-0571Bacteroidetesunclassified96%AJ252646土壤土壤MZ-1-0611BacteroidetesFerruginibacter98%HQ327286雪寒冷环境MZ-1-0621BacteroidetesHymenobacter98%GQ454798冰川冰寒冷环境MZ-1-0711BacteroidetesSpirosoma92%EF507901淡水水环境MZ-1-0781BacteroidetesHymenobacter95%AY313909冰川冰寒冷环境MZ-1-0921Bacteroidetesunclassified87%HM125162土壤土壤MZ-1-1021BacteroidetesHymenobacter97%AY313909冰川冰寒冷环境MZ-1-1051BacteroidetesFlavobacterium97%HQ436466冰川融水寒冷环境MZ-1-1312BacteroidetesFerruginibacter98%FR848687湖泊水环境MZ-3-1223BacteroidetesHymenobacter94%JN637324冰川土壤寒冷环境MZ3-2-0024Bacteroidetesunclassified88%EU133679土壤土壤MZ3-2-0062Bacteroidetesunclassified97%JF269100湖泊水环境MZ3-2-0071Bacteroidetesunclassified98%FR667468湖泊水环境MZ3-2-01415Bacteroidetesunclassified98%FR667468湖泊水环境MZ3-2-0182BacteroidetesPedobacter99%HQ711410大气MZ3-2-0232BacteroidetesHymenobacter95%FR682738土壤土壤MZ3-2-0271BacteroidetesSpirosoma92%JF268910大气MZ3-2-0321Bacteroidetesunclassified90%JN637324冰川土壤寒冷环境MZ3-2-0532BacteroidetesSpirosoma94%JF268910大气MZ3-2-0672Bacteroidetesunclassified87%AB362261沉积物MZ3-2-0692BacteroidetesSpirosoma95%AY279982沙漠MZ3-2-0961Bacteroidetesunclassified85%HM016164湖泊水环境MZ3-2-1001Bacteroidetesunclassified95%EU915220沉积物MZ3-2-1071Bacteroidetesunclassified97%FR667468湖泊水环境MZ3-3-0031Bacteroidetesunclassified98%GU906385土壤土壤MZ3-3-0081Bacteroidetesunclassified96%EU152997雪寒冷环境MZ3-3-0123BacteroidetesHymenobacter94%JN637324冰川土壤寒冷环境MZ3-3-0132BacteroidetesHymenobacter94%NR_042172大气MZ3-3-0181BacteroidetesHymenobacter97%HE647720大气MZ3-3-0223Bacteroidetesunclassified99%EU527175雪寒冷环境MZ3-3-0253BacteroidetesFlavobacterium98%DQ512791云层水滴水滴MZ3-3-0421BacteroidetesSegetibacter94%NR041501土壤土壤MZ3-3-0611BacteroidetesPedobacter97%FJ897516土壤土壤MZ3-3-0751Bacteroidetesunclassified98%FR682738土壤土壤MZ3-3-0783BacteroidetesHymenobacter98%FR691446水水环境MZ3-3-0801BacteroidetesHymenobacter96%HQ256778云层水滴MZ3-3-0991BacteroidetesHymenobacter96%EU152997雪寒冷环境MZ-4-0041Bacteroidetesunclassified95%JF183797皮肤MZ-4-0211Bacteroidetesunclassified97%FN984845生物膜MZ-4-0261Bacteroidetesunclassified93%FN984845生物膜MZ-4-0311BacteroidetesHymenobacter99%EU029121核污染土壤土壤MZ-4-0471BacteroidetesFlavobacterium98%AM934661溪流水环境

MZ-4-0741Bacteroidetesunclassified92%EF073788牧场MZ-4-0781Bacteroidetesunclassified95%JN795574土壤土壤MZ-4-0901BacteroidetesSpirosoma94%AM940665北极土壤寒冷环境MZ-4-1021BacteroidetesSpirosoma99%FJ490259MZ-4-1222BacteroidetesFlavobacterium99%AF493663河流水环境MZ-1-0271β-Polaromonas94%EU802064海水水环境MZ-1-0701β-unclassified97%CU918477污水水环境MZ-1-0843β-unclassified99%HQ003497湖泊水环境MZ-1-1031β-Polaromonas97%EF197000沉积物MZ3-2-0551β-unclassified99%EF221214土壤土壤MZ3-2-1061β-Massilia99%JN650584岩石MZ3-3-0192β-unclassified99%AF529102MZ3-3-0443β-unclassified99%HM156149冰川土壤寒冷环境MZ3-3-0621β-unclassified99%AM062710MZ-4-0631β-unclassified96%HQ425959森林土壤土壤MZ-4-0681β-unclassified95%DQ234483北极土壤寒冷环境MZ-4-0691β-unclassified97%EU641895湖泊水环境MZ-4-1252β-Rhodoferax99%HQ333446雪寒冷环境MZ-4-1262β-unclassified99%NR040898MZ-1-0391CyanobacteriaChlorophyta99%AB374385岩石MZ-1-0981CyanobacteriaGpI98%FJ490314岩石MZ3-2-01234CyanobacteriaGpI99%HQ189035高寒山地土壤寒冷环境MZ3-2-0255CyanobacteriaGpI99%FJ490311岩石MZ3-2-0781Cyanobacteriaunclassified95%FJ028679岩石MZ3-2-1082CyanobacteriaGpI99%JF269004大气MZ3-3-0044CyanobacteriaGpI99%EF522269岩石MZ-4-0121CyanobacteriaGpI99%HQ230215雪寒冷环境MZ-4-0501CyanobacteriaGpI97%FJ028687岩石MZ-4-0642CyanobacteriaGpI99%AY493595MZ-4-0711CyanobacteriaStreptophyta99%HQ234669MZ-1-0801Deinococcus-Thermusunclassified94%AY960773MZ3-2-0034Deinococcus-ThermusDeinococcus90%EU308577核污染土壤土壤MZ3-2-0861Deinococcus-ThermusTruepera99%AB374367岩石MZ-4-0491Deinococcus-ThermusTruepera99%JN020216混凝土MZ-4-0573Deinococcus-ThermusDeinococcus98%FR682758土壤土壤MZ-4-0821Deinococcus-ThermusDeinococcus92%EU029134核污染土壤土壤MZ-4-0021Deltaproteobacteriaunclassified98%EU869762沉积物MZ3-2-0045FirmicutesPlanomicrobium99%EU647524冰川表层雪寒冷环境MZ3-2-0153FirmicutesPlanococcus99%HQ625076泉水水环境MZ3-2-0161FirmicutesSalinicoccus99%FJ477399MZ3-2-0374FirmicutesStaphylococcus99%AB689750MZ3-2-0401Firmicutesunclassified99%EU467027非洲象排泄物

MZ3-3-0071FirmicutesLactobacillus99%CP002461MZ3-3-0171FirmicutesBacillus99%AF227865MZ3-3-0971Firmicutesunclassified99%JF733418MZ3-3-1001FirmicutesTuricibacter99%JN117219湖水水环境MZ-4-0221Firmicutesunclassified97%DQ129490城市气溶胶MZ3-3-0901γ-Psychrobacter100%GQ464392冰冻鸡肉MZ3-3-1022γ-Psychrobacter99%JN864009北极沉积物寒冷环境MZ-4-0232γ-Pantoea99%HE613771种子植物MZ3-2-0951GemmatimonadetesGemmatimonas98%JN795842土壤土壤MZ3-3-0501GemmatimonadetesGemmatimonas99%EU869744沉积物MZ-1-0361unclassifiedunclassified97%JN225544岩石MZ-1-0891unclassifiedunclassified93%JN225527岩石MZ3-2-0131unclassifiedunclassified90%AY694566土壤土壤MZ3-2-0201unclassifiedunclassified94%JF695967溪流生物膜水环境MZ3-2-0471unclassifiedunclassified99%FJ490316岩石MZ3-2-0851unclassifiedunclassified99%HQ616038土壤土壤MZ3-3-0661unclassifiedunclassified98%GU568983叶片植物MZ-4-0481unclassifiedunclassified91%DQ675487淡水湖水环境MZ-4-0702unclassifiedunclassified99%AB374370岩石表面MZ-4-0761unclassifiedunclassified94%JN225527岩石MZ3-3-0401Verrucomicrobiaunclassified96%FR849465土壤土壤MZ3-3-0541Verrucomicrobiaunclassified96%FQ659775土壤土壤MZ3-3-0811VerrucomicrobiaVerrucomicrobium93%FQ660454土壤土壤

注: α-: Alphaproteobacteria; β-: Betaproteobacteria; γ: Gammaproteobacteria

表3木吉冰川雪中细菌Genbank比对最相似菌株结果
Table 3 The most similar blast result in Genbank of bacteria isolated from Muji glacier

样号克隆数类别属相似度GeneBank分离环境分类MJ-1-00641ActinobacteriaCryobacterium99%JF267313天山1号冰川土壤寒冷环境MJ-1-0501ActinobacteriaCryobacterium95%GU249561冰川土壤寒冷环境MJ-2-861ActinobacteriaArthrobacter100%CP002379土壤土壤MJ-3-0202Actinobacteriaunclassified98%HQ900046火山沉降物MJ-3-0612ActinobacteriaAeromicrobium99%GU300706土壤土壤MJ-4-0371ActinobacteriaCellulomonas97%NR044526大气MJ-4-0681Actinobacteriaunclassified96%DQ351735土壤土壤MJ-4-0833ActinobacteriaSalinibacterium100%HQ327110雪寒冷环境MJ-1-0131α-unclassified95%FR869825叶面植物MJ-1-0271α-Roseomonas95%AJ968702根际植物MJ-2-0641α-unclassified100%NR025117医院水MJ-2-0652α-unclassified99%FN794227土壤土壤MJ-2-781α-Rickettsia99%AF322443MJ-3-0293α-Sphingomonas98%AF395032沃斯托克湖寒冷环境

MJ-1-00143BacteroidetesHymenobacter99%EF423320天山1号冰川寒冷环境MJ-1-0082BacteroidetesHymenobacter98%EU155016冰川寒冷环境MJ-1-01113BacteroidetesHymenobacter98%FR691445湖泊水环境MJ-1-01425BacteroidetesHymenobacter98%EF423320天山1号冰川寒冷环境MJ-1-0151BacteroidetesHymenobacter96%FR691447南极湖泊水环境MJ-1-0237BacteroidetesHymenobacter97%EF423320天山1号冰川寒冷环境MJ-1-0722BacteroidetesHymenobacter96%FR682725土壤土壤MJ-2-00443BacteroidetesFlavobacterium100%HQ4364冰川水水环境MJ-2-971BacteroidetesHymenobacter95%EF423320天山1号冰川寒冷环境MJ-3-0027BacteroidetesFerruginibacter99%HQ327260雪寒冷环境MJ-3-0102BacteroidetesFerruginibacter98%HQ327260雪寒冷环境MJ-3-0152BacteroidetesArcicella98%AY584583湖泊水环境MJ-3-0166BacteroidetesHymenobacter97%FR691445水水环境MJ-3-01813BacteroidetesArcicella99%AY584583湖水水环境MJ-3-02319BacteroidetesFlavobacterium99%HQ327133雪寒冷环境MJ-3-0301Bacteroidetesunclassified94%FR682724土壤土壤MJ-3-03110BacteroidetesArcicella99%EU263781雪寒冷环境MJ-3-1051BacteroidetesFerruginibacter99%EU978841 冰寒冷环境MJ-4-0131BacteroidetesHymenobacter96%GQ454798冰寒冷环境MJ-4-0151BacteroidetesHymenobacter96%EF423320 天山1号冰川寒冷环境MJ-4-0251BacteroidetesHymenobacter97%EF423320天山1号冰川寒冷环境MJ-4-0561Bacteroidetesunclassified89%DQ628945冰川寒冷环境MJ-4-0626BacteroidetesHymenobacter98%EF423320冰川寒冷环境MJ-4-0812Bacteroidetesunclassified98%FR691449湖泊水环境MJ-4-1005BacteroidetesFlavobacterium99%DQ628945冰川寒冷环境MJ-1-00353β-Polaromonas100%JF719338冰川沉积物寒冷环境MJ-1-00956β-Polaromonas100%EF423330天山1号冰川寒冷环境MJ-1-0581β-Variovorax95%HQ005422土壤土壤MJ-1-06917β-unclassified99%JN377667MJ-1-0762β-Burkholderia99%DQ234483北极土壤寒冷环境MJ-1-1011β-Polaromonas97%JF418125火山沉积物MJ-2-0141β-Janthinobacterium92%EU368459沉积物MJ-2-0321β-Polaromonas97%FR696878湖泊水环境MJ-2-0379β-Polaromonas99%HQ327169雪寒冷环境MJ-2-0502β-Aquabacterium99%FQ659700土壤土壤MJ-2-932β-unclassified98%HQ327299雪寒冷环境MJ-3-0015β-Polaromonas99%HQ327190雪寒冷环境MJ-3-0051β-unclassified97%JQ031914MJ-3-00918β-Rhodoferax99%FQ660136土壤土壤MJ-3-0143β-Polaromonas96%EF190152雪寒冷环境MJ-3-0502β-Polaromonas99%FJ979859雪寒冷环境

MJ-2-0533β-unclassified98%HQ327195雪寒冷环境MJ-3-0666β-unclassified100%JN377667MJ-3-0683β-Rhodoferax98%AY250103沉积物MJ-3-0781β-unclassified99%EU978787冰川冰寒冷环境MJ-3-0821β-Polaromonas98%HM583567山地冰川环境寒冷环境MJ-3-0891β-unclassified96%HQ327299雪寒冷环境MJ-4-0112β-Methylibium99%EU26371651号冰川表层雪寒冷环境MJ-4-0201β-unclassified97%FJ802339多瑙河沉积物MJ-4-0391β-unclassified99%HQ327299雪寒冷环境MJ-4-0771β-Polaromonas94%HM730884土壤土壤MJ-1-0029CyanobacteriaBacillariophyta98%HQ595208冰芯寒冷环境MJ-1-00431CyanobacteriaBacillariophyta99%GU246925木孜塔格冰川寒冷环境MJ-1-03121CyanobacteriaGpI99%DQ471915MJ-1-0797Cyanobacteriaunclassified99%FJ946524北极雪寒冷环境MJ-1-0974Cyanobacteriaunclassified99%HQ188982高寒山地土壤寒冷环境MJ-1-1024CyanobacteriaChlorophyta98%HQ333391雪寒冷环境MJ-2-0422CyanobacteriaChlorophyta99%AJ867910湖泊水环境MJ-3-0543Cyanobacteriaunclassified99%EU26377151号冰川表层雪寒冷环境MJ-4-0171Cyanobacteriaunclassified100%EU527097雪寒冷环境MJ-4-0341Cyanobacteriaunclassified97%FJ977127北极微生物垫寒冷环境MJ-4-1021Cyanobacteriaunclassified94%GQ324965淡水水环境MJ-2-0021FirmicutesClostridium99%FR848664湖泊水环境MJ-2-0591FirmicutesSporosarcina99%DQ339608植物植物MJ-2-901Firmicutesunclassified98%EU867380MJ-2-954FirmicutesBacillus99%JF269099大气MJ-1-0511TM7unclassified99%GU906476土壤土壤MJ-4-0231TM7unclassified97%EF540381半成焦煤MJ-4-0291TM7unclassified98%FR871634温室土壤土壤MJ-4-0821TM7unclassified99%DQ418531冰川寒冷环境MJ-1-0571unclassifiedunclassified99%AF263336MJ-1-0744unclassifiedunclassified90%EF073900草地MJ-2-0541unclassifiedunclassified92%GU366852温带森林土壤土壤MJ-2-0722unclassifiedunclassified91%GU074083淡水水环境MJ-3-0411unclassifiedunclassified91%GU246793枪勇冰川寒冷环境MJ-3-0451unclassifiedunclassified91%CU925625厌氧硝化池MJ-4-0522unclassifiedunclassified89%FJ484734生物膜

注: α-: Alphaproteobacteria; β-: Betaproteobacteria; γ: Gammaproteobacteria

雅拉冰川雪细菌属于Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Deltaproteobacteria, Cyanobacteria, Chloroflexi, Actinobacteria, Bacteroidetes, Firmicutes和Acidobacteria这10个类群。以Betaproteobacteria, Cyanobacteria和Alphaproteobacteria为主要类群, 所占比例分别为39%, 25%和11%(图2)。在优势类群Betaproteobacteria中46%的细菌16S rRNA序列与分离自奎屯河上游51号冰川、 枪勇冰川、 高山冻土中的微生物具有很高的相似性(98%~99%)。雅拉冰川细菌鉴定到属水平的细菌占其细菌总数的61.2%, 其中优势属为Streptophyta(11.0%),Bacillus(8.5%),Hymenobacter(6.1%)。

整体上, 慕士塔格、 木吉和雅拉冰川雪中细菌属于Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Deltaproteobacteria, Cyanobacteria, Actinobacteria, Bacteroidetes, Firmicutes, Acidobacteria, OD1, Chloroflexi, TM7和Planctomycetes这13大类60个属, 其中有103个为未定属。与从南极史考特站表层雪、 北极斯瓦尔巴特群岛、 日本Tateyama山、 我国新疆东天山和奎屯河上游51号冰川、 云南玉龙雪山、 四川螺沟冰川、 青藏高原卓奥友、 果曲、 扎当、 东绒布、 帕隆4号、 枪勇、 和老虎沟冰川雪中微生物群落组成相近[7,13,18-19,23,27,30-31]

对三个冰川雪中主要优势类群所占比例研究发现, 三大主要优势类群所占比例之和超过了70%。分别是慕士塔格冰川Bacteroidetes, Betaproteobacteria和Cyanobacteria所占比例之和为73%。木吉冰川Bacteroidetes, Betaproteobacteria和Cyanobacteria所占比例之和为84%。雅拉冰川Betaproteobacteria, Cyanobacteria和Alphaproteobacteria所占比例之和为75%。由此可见, 不同冰川上特定海拔和季节的积雪中保存的微生物群落被特定的优势类群所主导[34]。Segawa等[32]对阿拉斯加Gulkana冰川微生物沿海拔梯度变化的研究认为不同海拔上都有特地类群的优势微生物群落, 并且把这些群落分为Lower-zone类型, Middle-zone类型和Upper-zone类型; 6个海拔的样品中, 三个主要优势群落的比例也都超过了70%, 平均为79%。刘勇勤[33]对东绒布冰川雪中微生物群落的研究也发现优势类群占有相当高的比例, 如Gammaproteobacteria, Firmicutes, Betaproteobacteria是珠峰地区冰雪细菌中主要类群, 占总数的83%。

表4雅拉冰川雪中细菌Genbank比对最相似菌株结果
Table 4 The most similar blast result in Genbank of bacteria isolated from Yala glacier

样号克隆数门属相似度GeneBank分离环境分类YA_3_141AcidobacteriaGp3100%FJ694458河流水环境YAS1_1_341AcidobacteriaGp497%FJ790570青藏高原沙漠寒冷环境YAS1_1_361AcidobacteriaGp198%EF219808南极土壤寒冷环境YA_3_601ActinobacteriaQuadrisphaera100%AY831385YA_3_842Actinobacteriaunclassified99%YA_3_931ActinobacteriaModestobacter100%YA_3_951ActinobacteriaMicrolunatus99%EU297027土壤土壤YA_3_991Actinobacteriaunclassified100%YAS1_1_262Actinobacteriaunclassified99%HM222666深海沉积物YAS1_1_701Actinobacteriaunclassified99%EU636020柯林斯冰川寒冷环境YAS1_1_811ActinobacteriaModestobacter99%AF409007土壤土壤YAS1_1_861ActinobacteriaFriedmanniella99%NR028884湖泊水环境YAS1_1_891ActinobacteriaNonomuraea100%AM932258真菌YAS1_4_201ActinobacteriaMicrobacterium99%HM196765南极雪寒冷环境YAS1_4_941ActinobacteriaPseudonocardia99%AJ252826YAS1_5_197Actinobacteriaunclassified99%EU978742南极冰川冰寒冷环境YAS1_5_21Actinobacteriaunclassified99%EU527125扎当冰川表层雪寒冷环境YAS1_5_591Actinobacteriaunclassified99%EU153040果曲冰川雪寒冷环境YAS1_5_801Actinobacteriaunclassified94%CU918034污泥土壤YA_3_321BacteroidetesChryseobacterium98%AM988899湖水水环境YA_3_392BacteroidetesHymenobacter98%GQ128143青藏高原土壤寒冷环境YA_3_791BacteroidetesSegetibacter95%DQ365993南极土壤寒冷环境YAS1_1_711BacteroidetesHymenobacter96%EU382214青藏高原土壤寒冷环境

YAS1_1_81Bacteroidetesunclassified97%EF221070南极土壤寒冷环境YAS1_3_242BacteroidetesHymenobacter99%EU153039唐古拉表层雪寒冷环境YAS1_4_22BacteroidetesHymenobacter99%EU153039果曲冰川雪寒冷环境YAS1_4_241BacteroidetesSpirosoma99%FJ490259南极岩石寒冷环境YAS1_4_491BacteroidetesSpirosoma99%FN811264南极土壤寒冷环境YAS1_4_671BacteroidetesSpirosoma99%FJ490259南极岩石寒冷环境YAS1_5_16Bacteroidetesunclassified81%AM997437深海沉积物YAS1_5_1008BacteroidetesFerruginibacter98%HM565378格陵兰冰川寒冷环境YAS1_5_351BacteroidetesFerruginibacter100%GU246760枪勇冰川寒冷环境YAS1_5_361BacteroidetesFerruginibacter97%HM439895格陵兰冰川寒冷环境YAS1_5_482BacteroidetesFerruginibacter97%EU527164扎当冰川表层雪寒冷环境YAS1_5_522Bacteroidetesunclassified92%EU218955湖泊水环境YAS1_5_621BacteroidetesHymenobacter99%EU153039果曲冰川雪寒冷环境YA_3_621Chloroflexiunclassified100%EF651681土壤土壤YAS1_4_462ChloroflexiChloroflexus99%AY921893土壤土壤YAS1_4_863Chloroflexiunclassified99%EU134068土壤土壤YA_3_107CyanobacteriaStreptophyta99%Z81323YA_3_10025CyanobacteriaStreptophyta99%EU161552YA_3_184CyanobacteriaStreptophyta100%GQ998717YA_3_243CyanobacteriaStreptophyta99%AM940794北极土壤土壤YA_3_461Cyanobacteriaunclassified98%EU160009根际土壤土壤YA_3_532CyanobacteriaGpI98%AY425770火山沉积物土壤YA_3_552Cyanobacteriaunclassified99%HM119276冰川底部岩石寒冷环境YA_3_821CyanobacteriaGpI99%DQ471915山地YA_3_871CyanobacteriaGpI97%AJ544082YA_3_901Cyanobacteriaunclassified99%EF522323岩石YAS1_1_10030CyanobacteriaStreptophyta99%AP005672YAS1_1_134Cyanobacteriaunclassified96%FJ790635青藏高原沙漠石英寒冷环境YAS1_1_323Cyanobacteriaunclassified99%FJ849316北极溪流寒冷环境YAS1_1_331CyanobacteriaStreptophyta99%YAS1_1_451Cyanobacteriaunclassified94%EU705095肯尼迪空军基地YAS1_1_472CyanobacteriaStreptophyta99%YAS1_1_731Cyanobacteriaunclassified96%FJ790635青藏高原沙漠石英寒冷环境YAS1_1_921CyanobacteriaGpI96%EU753646岩石YAS1_3_611CyanobacteriaStreptophyta99%YAS1_3_851Cyanobacteriaunclassified99%EU978661冰川寒冷环境YAS1_4_311CyanobacteriaStreptophyta99%YAS1_4_323CyanobacteriaBacillariophyta98%FJ946590北极雪寒冷环境YAS1_4_392Cyanobacteriaunclassified98%FJ977164北极寒冷环境YAS1_4_533Cyanobacteria GpI99%DQ471915遗迹YAS1_4_551Cyanobacteriaunclassified99%FJ946524北极雪寒冷环境YAS1_4_752Cyanobacteriaunclassified98%AY493580南极寒冷环境

YAS1_5_108CyanobacteriaChlorophyta98%DQ521484湖泊寒冷环境YAS1_5_851CyanobacteriaChlorophyta89%EU273087湖泊水环境YAS1_5_981Cyanobacteriaunclassified99%EU263771奎屯河51号冰川表层雪寒冷环境YAS1_1_101DeltaproteobacteriaKofleria97%FJ152793土壤土壤YA_3_11FirmicutesTumebacillus98%GU369561湖泊水环境YA_3_162FirmicutesBacillus98%FN429099土壤土壤YA_3_35FirmicutesBacillus98%HM113638阿拉斯加土壤寒冷环境YA_3_371FirmicutesAcetivibrio94%AB487679土壤土壤YA_3_921FirmicutesBacillus99%EF074872土壤土壤YAS1_1_33FirmicutesBacillus99%EF074504草地土壤YAS1_1_401Firmicutesunclassified99%AY660701冻土寒冷环境YAS1_1_421FirmicutesClostridium99%AY170379泻湖水环境YAS1_1_501FirmicutesBacillus99%GU256501土壤土壤YAS1_1_751FirmicutesTumebacillus99%DQ129361城市气溶胶YAS1_1_901FirmicutesBacillus98%GQ183258湿地土壤YAS1_5_381FirmicutesBacillus95%DQ517147湖泊水环境YAS1_1_1215α-unclassified99%AM940520北极土壤寒冷环境YAS1_1_281α-unclassified97%GU219533火山岩YAS1_1_461α-Bradyrhizobium99%FJ540928土壤土壤YAS1_1_493α-unclassified98%GU219654火山岩土壤YAS1_1_51α-unclassified96%AB464939阿拉斯加冰川寒冷环境YAS1_1_541α-unclassified97%GU219654火山岩YAS1_1_631α-Methylobacterium100%EU803702湖水水环境YAS1_1_691α-Brevundimonas100%HM446258马铃薯植物YAS1_1_841α-unclassified98%EF220105南极土壤寒冷环境YAS1_1_871α-unclassified97%EU751320砂岩地层土壤YAS1_4_132α-Brevundimonas98%EU584516冰川融水寒冷环境YAS1_4_721α-Brevundimonas100%HM446258马铃薯植物YAS1_5_291α-Sandarakinorhabdus99%AM940864北极土壤寒冷环境YAS1_5_373α-unclassified99%EU978664冰川冰寒冷环境YAS1_5_551α-Sphingomonas99%HM439911格陵兰冰川寒冷环境YA_3_193α-unclassified98%AF058665植物植物YA_3_21α-unclassified99%EF075650森林土壤YA_3_442α-unclassified97%GU906603土壤土壤YA_3_481α-Brevundimonas99%FJ774973植物植物YA_3_681α-Rubellimicrobium98%EU869608南极沉积物寒冷环境YA_3_701α-unclassified97%EU218989寡营养湖水水环境YA_3_711α-unclassified96%DQ129276城市气溶胶YA_3_751α-unclassified94%DQ648974土壤土壤YA_3_941α-Roseomonas100%AM231587饮用水水环境YAS1_11β-Herbaspirillum98%GQ396966土壤土壤YAS1_1_941β-Methylobacillus99%FJ826053植物植物

YAS1_3_135β-Variovorax100%EU263786奎屯河51号冰川表层雪寒冷环境YAS1_3_1148β-Polaromonas99%EU263715奎屯河51号冰川表层雪寒冷环境YAS1_3_336β-unclassified99%EU267888奎屯河51号冰川表层雪寒冷环境YAS1_4_115β-Polaromonas99%EU263715奎屯河51号冰川表层雪寒冷环境YAS1_4_102β-Methylibium99%AM940850北极土壤寒冷环境YAS1_4_10028β-unclassified99%EU263676奎屯河51号冰川表层雪寒冷环境YAS1_4_771β-Naxibacter98%AM774588YAS1_4_781β-Acidovorax100%DQ111771盐沼YAS1_4_872β-Methylobacillus99%FJ826053表层海水水环境YAS1_5_122β-unclassified99%EU263777奎屯河51号冰川表层雪寒冷环境YAS1_5_133β-Variovorax99%GU246917木孜塔格冰川寒冷环境YAS1_5_149β-unclassified99%EU527129扎当冰川表层雪寒冷环境YAS1_5_216β-Methylibium99%EU153033果曲冰川雪寒冷环境YAS1_5_226β-Polaromonas98%DQ675493冰川融水寒冷环境YAS1_5_42β-unclassified99%EU267886奎屯河51号冰川表层雪寒冷环境YAS1_5_432β-unclassified99%GU213381阿尔卑斯山寒冷环境YAS1_5_503β-unclassified90%EU287927YAS1_5_581β-Methylobacillus99%FJ826053表层海水水环境YAS1_5_783β-unclassified99%EU978769冰川冰寒冷环境YAS1_5_821β-unclassified99%GQ128141青藏高原土壤寒冷环境YAS1_5_911β-unclassified99%GU246736枪勇冰川寒冷环境YA_3_761β-Massilia99%DQ177478青藏高原冻土寒冷环境YA_3_81β-Burkholderia98%AB118226YA_3_891β-Massilia99%AF443565半干旱土壤土壤YAS1_4_126γ-Acinetobacter99%GU246941木孜塔格冰川寒冷环境YAS1_4_171γ-Lysobacter99%DQ490982YAS1_5_243γ-Acinetobacter99%AF468386北极海冰寒冷环境

注: α-: Alphabacteria; β-: Betaproteobacteria; γ-: Gammaproteobacteria

图2慕士塔格、 木吉及雅拉冰川主要细菌群落组成
Fig.2 The dominat bacterial phyla of the Muatagh Ata, Muji and Yala Glaciers

三个冰川雪中细菌序列与GenBank比对结果显示, 冰川雪中细菌与分离自海洋, 湖泊, 河流, 土壤, 植物, 沙漠以及其他寒冷环境中的细菌具有很高的相似性(表5), 这与之前对南北极和中纬度山地冰川微生物来源的认识是一致的[28]。慕士塔格冰川细菌16S rRNA序列blast结果显示其最相近的序列来自于寒冷环境、 土壤和水环境的比例为17%, 22%和20%。同样, 来源于水环境和土壤的细菌在木吉冰川也占了比较高的比例, 均超过10%。雅拉冰川细菌16S rRNA序列blast结果显示其最相近的序列来自于寒冷环境、 土壤和水环境的比例为46%, 18%和10%。3个冰川雪中细菌最相近序列都是以来源于寒冷环境的占最主要比例, 这与刘勇勤等[13]的研究是一致的。

表5最相近序列的不同分离环境所占百分比
Table 5The percentage of the closest sequences in different habitats

慕士塔格冰川木吉冰川雅拉冰川寒冷环境17%48%46%土壤22%14%18%水环境20% 13%10%植物4%3%4%其他37%22%22%

受不同气候环境因子影响的冰川雪中微生物群落组成有其各自特点[13,16,34]。西风和季风影响区冰川雪中微生物群落组成不同。从图2中可以看出, 同处西风带的慕士塔格冰川和木吉冰川的主要优势类群是相似的, 都是以Bacteroidetes和Betaproteobacteria为优势类群, 所占比例分别为35%和24%(慕士塔格), 34%和36%(木吉)。受西风带影响的果曲冰川和扎当冰川中Bacteroidetes和Betaproteobacteria也是优势类群[13]。而受印度季风影响的雅拉冰川的主要优势类群为Betaproteobacteria和Cyanobacteria, 所占比例为40%和25%。雅拉冰川Cyanobacteria所占比例高达25%, 而慕士塔格和木吉冰川都只占14%。高比例的Cyanobacteria可能是起源于印度洋的印度季风带来的, 因为Cyanobacteria在水环境中普遍存在。两个气候带的冰川雪中都有Betaproteobacteria, 这可能是同为高山冰雪环境导致的。不同之处, 西风带冰川占主要成分的Bacteroidetes多起源于土壤, 而印度季风冰川占主要成分的Cyanobacteria多来源于水环境。以上结果都表明西风和季风影响区冰川雪中微生物具有不同的群落组成而且具有一定规律。

2.2冰川雪中细菌多样性差异

不同气候区冰川雪中微生物群落组成具有差异性, 且其多样性也有所不同[35-36]。从表6中可以看出, 位于西风带的慕士塔格和木吉冰川雪中细菌多样性相近且与受印度季风影响的雅拉冰川之间具有明显差异: 西风带慕士塔格冰川和木吉冰川雪中微生物Shannon多样性普遍要高于印度季风区的雅拉冰川, 西风带木吉冰川8个冰雪样品中有6个高于印度季风带的所有样品。雅拉冰川最低的Shannon多样性为1.07, 远低于西风带的慕士塔格和木吉冰川, Simpson多样性指数有相似的规律。造成这一原因的结果可能是处于西风带的冰川受到中亚地区粉尘中心的影响, 其来源也更具多样性, 而印度季风影响下的雅拉冰川细菌来源相对单一[13]。表明西风和季风影响区冰川雪中微生物具有不同的多样性, 处于西风带的慕士塔格和木吉冰川微生物的多样性Shannon指数要高于印度季风区的雅拉冰川。

2.3冰川雪中细菌群落组成季节变化

印度季风带的雅拉冰川细菌群落组成受季节的影响显著。如图3所示, 在表层雪和0~20 cm所代表的非季风季节冰雪中以Cyanobacteria为主, 所占比例分别为52%和46%。而50~70 cm和110~180 cm深度所代表的两个季风季节冰雪中则以Betaproteobacteria, 所占比例分别为96%和53%, 为绝对优势类群, 可能是这个时期随印度季风带来了大量的Betaproteobacteria, 也可能是这个时期冰川表面的环境适合Betaproteobacteria生长繁殖[37]。而位于两个季风季节之间的80~100 cm处代表的非季风季节也是以Betaproteobacteria为主, 所占比例为42%, 介于两个季风季节之间。这可能是因为在季风季节随印度季风带来的大量Betaproteobacteria对80~100 cm处代表的非季风季节产生了影响。冰川雪中微生群落结构与季节之间密切相关, 而且其多样性与季节之间也有关系。张淑红等[38]对珠穆朗玛峰冰芯与季节之间的关系研究发现, 由于季风季节微生物来源于西风和印度季风的陆地和海洋而非季风季节的微生物只来自西风带, 因此季风季节微生物多样性要高。从表4也可以看出, 雅拉冰川雪中微生物多样性在非季风季节的三个样品中多样性比较接近, 介于2.44~2.97。而季风季节YAS1-5多样性指数相对较高为 3.11。这可能是因为季风季节带来了大量的微生物。

表6三个冰川雪细菌多样性指数
Table 6 Bacterial diversity Shannon indexes of the three glaciers

MJ-1MJ-2MJ-3MJ-4MZ-1MZ-4MZ3-2MZ3-3YAS1-3YAS1-5YA-3YAS1-1YAS1-4Shannon H2.552.413.193.43.524.053.543.921.073.112.972.712.44Simpson 1-D0.880.860.930.950.960.980.950.970.590.940.890.850.84

处于西风带的慕士塔格冰川雪中细菌的群落组成与季节之间的关系并不明显。从图4可以看出慕士塔格冰川的夏季和冬季冰川雪都是以Bacteroidetes为优势类群。海拔相近的两个冬季雪MZ3-2(6 000 m), MZ3-3(6 000 m)和夏季雪样MZ-4(6 200 m)中的第二优势类群都是Cyanobacteria。而海拔相对较低(5 288 m)的MZ-1雪样的第二优势类群为Betaproteobacteria。这可能表明西风带冰川细菌的群落组成受季节影响较小。

图3雅拉冰川雪细菌的季节变化
Fig.3 Seasonal variation of bacterial community of the Yala Glacier

图4慕士塔格冰川雪细菌的季节变化
Fig.4 Seasonal variation of bacterial community of the Muatagh Ata Glacier

3结论

西风和季风影响区冰川雪中微生物具有不同的群落组成。西风带的慕士塔格和木吉冰川冰川都是以Bacteroidetes和Betaproteobacteria为优势类群, 季风影响区的雅拉冰川雪细菌的主要优势类群为Betaproteobacteria和Cyanobacteria。西风带不同冰川雪中主要优势类群相近, 都是Bacteroidetes和Betaproteobacteria。印度季风带的雅拉冰川细菌类群以群落组成受Betaproteobacteria和Cyanobacteria为主, 且受季节影响明显。在表层雪和0~20 cm深度所代表的非季风季节以Cyanobacteria为主, 而50~70 cm和110~180 cm深度所代表的两个季风季节则以Betaproteobacteria为主。

西风和季风影响区冰川雪中微生物具有不同的多样性。西风带慕士塔格和木吉冰川雪中微生物Shannon多样性普遍要高于印度季风区的雅拉冰川, 这可能是因为西风带粉尘相对复杂的来源导致相对高的细菌多样性。雅拉冰川雪中微生物多样性在非季风季节的三个样品中多样性比较接近, 介于2.44~2.97, 而季风季节多样性相对较高为3.11。

参考文献

[1] Shi Yafeng. Concise glacier inventory of China[M]. Shanghai: Shanghai Popular Science Press, 2005. [施雅风. 中国冰川目录[M]. 上海: 上海科学普及出版社, 2005.]

[2] Yao Tandong, Thompson L, Yang Wei, et al. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings[J]. Nature Climate Change, 2012, 2(9): 663-667.

[3] Liu Yongqin, Yao Tandong, Xu Baiqing, et al. Bacterial abundance vary in Muztagata ice core and respond to climate and environment change in the past hundred years[J]. Quaternary Sciences, 2013, 33(1): 19-25. [刘勇勤, 姚檀栋, 徐柏青, 等. 慕士塔格冰芯中近百年来细菌数量与气候环境变化的关系[J]. 第四纪研究, 2013, 33(1): 19-25.]

[4] Bakermans C. Limits for microbial life at subzero temperatures[M]. Psychrophilic: From Biodiversity to Biotechnology, Springer Berlin Heidelberg, 2008: 17-28.

[5] Amato P, Hennebelle R, Magand Olivier, et al. Bacterial characterization of the snow cover at Spitzberg, Svalbard[J]. Federation of European Microbiological Societies, 2007, 59(2): 255-264.

[6] Alexandre A, Christopher B. Are low temperature habitats hot spots of microbial evolution driven by viruses?[J]. Trends in Microbiology, 2011, 19(2): 52-57.

[7] Carpenter E, Lin Senjie, Capone D. Bacterial activity in South Pole snow[J]. Appllied and Environmental Microbiology, 2000, 66(10): 4514-4517.

[8] Michaud L G, Giudice A L, Mysara M, et al. Snow surface microbiome on the High Antarctic Plateau (DOME C)[J]. PloS one, 2014, 9(8): e104505.

[9] Jiang Xiawei, Cheng Hong, Zheng Beiwen, et al. Comparative genomic study of three species within the genus Ornithinibacillus, reflecting the adaption to different habitats[J]. Gene, 2016, 578(1): 25-31.

[10] Harding T, Jungblut A, Lovejoy C, et al. Microbes in High Arctic Snow and Implications for the Cold Biosphere[J]. Appllied and Environmental Microbiology, 2011, 77(10): 3234-3243.

[11] Liu Xiaobo, Kang Shichang, Yao Tandong, et al. The seasonal change of bacterial abundance and diversity in snow of the Guoqu Glacier, Mt. Geladaindong[J]. Journal of Glaciology and Geocryology, 2009, 31(4): 634-641. [刘晓波, 康世昌, 姚檀栋, 等. 各拉丹冬峰果曲冰川雪中细菌的季节变化特征[J]. 冰川冻土, 2009, 31(4): 634-641.]

[12] Abyzov S, Bobin N E, Koudriashov B B. Microbiological flora as a function of ice depth in central Antarctica[J]. Life sciences and space research, 1979, 17: 99-103.

[13] Liu Yongqin, Yao Tandong, Jiao Nianzhi, et al. Bacterial diversity in the snow over Tibetan Plateau Glaciers[J]. Extremophiles, 2009, 13(3): 411-423.

[14] Abyzov S, Mitskevich I, Poglazova M, et al. Microorganisms and unicellular algae in the ice sheet of Antarctica[J]. Proc SPIE, 1999, 3755: 176-186.

[15] Abyzov S. Microorganisms in the Antarctic ice[J]. Antarctic Microbiology, 1993, 1(1): 265-296.

[16] Antony R, Krishnan K P, Laluraj C M, et al. Diversity and physiology of culturable bacteria associated with a coastal Antarctic ice core[J]. Microbiological Research, 2012, 167(6): 372-380.

[17] Antje B, Alexandre A, Jody D M, et al. Microbial ecology of the cryosphere: sea ice and glacial habitats[J]. Natural Reviwes Microbiology, 2015, 13: 677-690.

[18] Liu Yongqin, Yao Tandong, Jiao Nianzhi, et al. Culturable bacteria in glacial meltwater at 6 350 m on the East Rongbuk Glacier, Mount Everest[J]. Extremophiles, 2008, 13(1): 89-99.

[19] Liu Yongqin, Yao Tandong, Jiao Nianzhi, et al. Abundance and diversity of snow bacteria in two glaciers at the Tibetan Plateau[J]. Frontiers of Earth Science in China, 2009, 3(1): 80-90.

[20] Liu Yongqin, Yao Tandong, Jiao Nianzhi, et al. Microbial diversity in the snow, a moraine lake and a stream in Himalayan glacier[J]. Extremophiles, 2011, 15(3): 411-421.

[21] Skidmore M, Foght J, Sharp M, et al. Microbial life beneath a high Arctic glacier[J]. Appllied and Environmental Microbiology, 2000, 66(8): 3214-3220.

[22] Zhang Xiaojun, Yao Tandong, Ma Xiaojun, et al. Microorganisms in a high altitude glacier ice in Tibet[J]. Folia Microbiologica, 2002, 47(3): 241-245.

[23] Ma Xiaojun, Liu Wei, Hou Shugui, et al. Cultural bacteria in snow pits of different type glaciers: diversity and relationship with envionment[J]. Journal of Glaciology and Geocryology, 2009, 31(3): 483-489. [马晓军, 刘炜, 侯书贵,等. 不同类型冰川雪中可培养细菌多样性变化及其与环境因子关系研究[J]. 冰川冻土, 2009, 31(3): 483-489.]

[24] Ma Xiaojun, Liu Wei, Hou Shugui, et al. Bacterial diversity and community at Yulong Mountains and their relationship to climate and envionmental changes[J]. Journal of Lanzhou University (Natural Sciences), 2009, 45(6): 94-100. [马晓军, 刘炜, 侯书贵, 等. 玉龙雪山冰川雪坑中细菌多样性群落结构及其与气候环境的关系[J]. 兰州大学学报: 自然科学版, 2009, 45(6): 94-100.]

[25] Shen Liang, Yao Tandong, Liu Yongqin, et al. Downward-shifting temperature range for the growth of snow-bacteria on glaciers of the Tibetan Plateau[J]. Geomicrobiology Journal, 2014, 31(9): 779-787.

[26] Larose C, Berger S, Ferrari C, et al. Microbial sequences retrieved from environmental samples from seasonal Arctic snow and meltwater from Svalbard, Norway[J]. Extremophiles, 2010, 14(2): 205-212.

[27] Xiang Shurong, Shang Tiancui, Chen Yong, et al. Changes in diversity and biomass of bacteria along a shallow snow pit from Kuytun 51 Glacier, Tianshan Mountains, China[J]. Journal of Geophysical Research, 2009, 114: 1-10.

[28] Zhang Shuhong, Hou Shugui, Yang Guangli, et al. Bacterial community in the East Rongbuk Glacier, Mt. Qomolangma (Everest) by culture and culture-independent methods[J]. Microbiological Research, 2010, 165(4): 336-345.

[29] Gordon D A, Giovannoni S J. Detection of stratified microbial populations related to Chlorobium and Fibrobacter species in the Atlantic and Pacific oceans[J]. Appllied Environmantal Microbiology, 1996, 62(4): 1171-1177.

[30] Amato P, Christner B. Energy metabolism response to low-temperature and frozen conditions in psychrobacter cryohalolentis[J]. Appllied and Environmental Microbiology, 2009, 75(3): 711-718.

[31] Segawa T, Miyamoto K, Ushida K, et al. Seasonal change in bacterial flora and biomass in mountain snow from the Tateyama Mountains, Japan, analyzed by 16S rRNA gene sequencing and real-time PCR[J]. Appllied and Environmental Microbiology, 2005, 71(1): 123-130.

[32] Segawa T, Takeuchi N, Ushida K, et al. Altitudinal changes in a bacterial community on Gulkana Glacier in Alaska[J]. Microbes and Environments, 2010, 25(3): 171-182.

[33] Liu Yongqin. Microrganism in snow, ice and glacial meltwater in the Tibetan Plateau and their climatic and environmental significances[D]. Beijing: University of Chinese Academy of Sciences, 2007. [刘勇勤. 青藏高原现代雪冰和冰川融水中微生物特征及其气候环境意义[D]. 北京: 中国科学院研究生院, 2007.]

[34] Shen Liang, Yao Tandong, Xu Baiqing, et al. Variation of culturable bacteria along depth in the East Rongbuk ice core, Mt. Everest[J]. Geoscience Frontiers, 2012, 3(3): 327-334.

[35] Zhao Mei. Bacterial diversity in snowpack on the Tibetan Plateau and its asjacent regions and their environmental signifeicance[D]. Lanzhou: Lanzhou University, 2011. [赵梅. 青藏高原及其毗邻地区冰川雪坑中细菌多样性及其环境意义[D]. 兰州: 兰州大学, 2011.]

[36] Zhou Ningyi. Microbial diversity on the Tibetan Plateau[J]. Microbiology China, 2014, 41(11): 2378. [周宁一. 青藏高原微生物多样性研究[J]. 微生物学通报, 2014, 41(11): 2378.]

[37] Zhang Xinfang, Yao Tandong, An Lizhe, et al. A study on the vertical profile of bacterial DNA structure in the Puruogangri (Tibetan Plateau) ice core using denaturing gradient gel electrophoresis[J]. Annal of Glaciology, 2006, 43(1): 160-166.

[38] Zhang Shuhong, Hou Shugui, Ma Xiaojun, et al. Culturable bacteria in Himalayan glacial ice in response to atmospheric circulation[J]. Biogeosciences, 2007, 4(1): 1-9.

Bacterial abundance and community composition of glacier snow in Western and Monsoon areas and their relations to climate environment

LIU Xiaobo1,2, XING Tingting2,5, LIU Yongqin3,4,5, XU Baiqing3,4,5, ZHAO Huabiao3,4,WANG Ninglian6, SHEN Liang4,5

(1.Kathmandu Center for Research and Education, CAS-TU, Kathmandu 44618, Nepal; 2.Key Laboratory of Alphine Ecology and Biodiversity,Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China; 3.Center for Excellence in Tibetan PlateauEarth Science of Chinese Academy of Sciences, Beijing 100101, China; 4.Key Laboratory of Tibetan Environment Changes andLand Surface Process, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China;5.University of Chinese Academy of Sciences, Beijing 100049, China; 6.College of Urban and EnvironmentalScience, Northwest University, Xian 710069, China)

Abstract: The environmental changes of the Qinghai-Tibet Plateau possess sensitive response to global changes. However, there is still a lack intensive study about the relationship between microorganisms and environment changes. In the present study, researches have been conducted in the Muztagh Ata Glacier, Muji Glacier and Yala Glacier to investigate snow bacteria and their relationships with local climatic environmental conditions. The results demonstrated that bacterial community of the Muztagh Ata Glacier and Muji Glacier in westerly area were dominated by Bacteroidetes and Betaproteobacteria; Cyanobacteria and Betaproteobacteria were the dominant groups in the Yala Glacier, which is affected by the Indian monsoon. It is also found that bacteria of the three glaciers have shared high 16S rRNA, similar to that from ocean, lakes, soil, plant, desert and other cold environment. These results also indicated that glaciers in westerly and Indian monsoon areas have different bacterial clades. Furthermore, it was found that bacterial diversity was affected by the climatic zone. Shannon′s diversity index was higher in Muji Glacier and Muztagh Ata Glacier than that in Yala glacier. Besides, Yala Glacier bacterial community varied significantly with season, while that in Muztagh Ata Glacier was not so significant.

Key words: Qinghai-Tibet Plateau; glacier; bacteria; community; diversity; climatic environment

(本文编辑: 周成林)

相关搜索