帕米尔东北缘晚新生代旋转运动新证据

日期:2019.12.24 阅读数:51

【类型】期刊

【作者】周在征,裴军令,李建锋,刘锋,盛美,赵越(中国地质科学院地质力学研究所;国土资源部古地磁与古构造重建重点实验室;中国地质大学(北京)地球科学与资源学院)

【作者单位】中国地质科学院地质力学研究所;国土资源部古地磁与古构造重建重点实验室;中国地质大学(北京)地球科学与资源学院

【刊名】地球物理学报

【关键词】 帕米尔;晚新生代;古地磁;构造旋转;喀什凹陷

【资助项】国家自然科学基金面上项目(41172177)资助

【ISSN号】0001-5733

【页码】P633-642

【年份】2019

【期号】第2期

【期刊卷】1;|3;|6;|7;|8;|4;|5;|2

【摘要】为进一步研究帕米尔东北缘晚新生代演化特征,在塔里木盆地西部英吉沙背斜上新世地层中采集了11个采点共111块古地磁样品.对样品进行系统热退磁测定,揭示了一组高温特征剩磁分量,获得了采样剖面的上新世古地磁极.特征剩磁方向为:Dg=342.4°,Ig=59.2°,κg=32.3,α95=8.6°;Ds=352.4°,Is=49.9°,κs=59.1,α95=6.3°,相对应的古地磁极位置为:79.7°N,295.9°E,dp=5.6°,dm=8.4°,α95=6.9°.这一高温分量通过了倒转检验,代表了研究区上新世时期的原生特征剩磁.通过对英吉沙背斜周缘断裂及形成的大地构造背景分析,结合其地貌特征、GPS数据,认为英吉沙背斜在开始形成至今经历了明显的逆时针构造旋转,该旋转同晚新生代以来帕米尔东北缘喀什凹陷发生刚性构造旋转运动有着密切的关系.

【全文文献传递

 帕米尔东北缘晚新生代旋转运动新证据

帕米尔东北缘晚新生代旋转运动新证据

周在征1,2,3, 裴军令1,2*, 李建锋1, 刘锋1, 盛美1,2, 赵越1

1 中国地质科学院地质力学研究所, 北京 100081 2 国土资源部古地磁与古构造重建重点实验室, 北京 100081 3 中国地质大学(北京)地球科学与资源学院, 北京 100083

摘要 为进一步研究帕米尔东北缘晚新生代演化特征,在塔里木盆地西部英吉沙背斜上新世地层中采集了11个采点共111块古地磁样品.对样品进行系统热退磁测定,揭示了一组高温特征剩磁分量,获得了采样剖面的上新世古地磁极.特征剩磁方向为: Dg=342.4°,Ig= 59.2°,κg=32.3,α95=8.6°; Ds=352.4°,Is=49.9°,κs=59.1,α95=6.3°,相对应的古地磁极位置为: 79.7°N,295.9°E,dp=5.6°,dm=8.4°,α95=6.9°.这一高温分量通过了倒转检验,代表了研究区上新世时期的原生特征剩磁.通过对英吉沙背斜周缘断裂及形成的大地构造背景分析,结合其地貌特征、GPS数据,认为英吉沙背斜在开始形成至今经历了明显的逆时针构造旋转,该旋转同晚新生代以来帕米尔东北缘喀什凹陷发生刚性构造旋转运动有着密切的关系.

关键词 帕米尔; 晚新生代; 古地磁; 构造旋转; 喀什凹陷

The paleomagnetic study on sedimentary rock developed in the Tarim basin offers a useful method for researching tectonic evolution. Combining with geomorphology and GPS data, our results suggest that the Yengisar anticline has undergone significant counterclockwise rotation since Pliocene. Comparisons of this paleomagnetic pole with adjacent regions imply the tectonic rotation in Kashi depression is associated with Northeastern Pamir evolution during the late Cenozoic.Keywords Pamir; Late Cenozoic; Paleomagnetism; Tectonic rotation; Kashi depression

1 引言

帕米尔弧形构造带,即青藏高原西构造结,位于青藏高原西北部,北接南天山,西为塔吉克盆地,东临塔里木盆地.帕米尔弧形构造带是新生代构造变形最强烈的地区之一,其形成时间、运动过程及动力学机制是近年来国内外地质学家研究的热点(Zheng et al.,2000;陈杰 等,2000;裴军令等,2008;Cowgill,2010;Fu et al.,2010;Sobel et al.,2011, 2013;陈汉林等,2014).

多年来帕米尔弧形构造带东北缘新生代的研究在构造变形(胡建中等,2008;陈汉林等,2010;陈杰等,2011)、地层时代(Zheng et al.,2000;陈杰等,2000;Chen et al.,2002;郑洪波等,2002;Yang et al.,2015)、地壳数值模拟(雷建设等,2002;张先康等,2002;He et al.,2013)、深部地球物理(胥颐等,2006;唐明帅等,2014)、构造旋转(Chen et al.,1992;Gilder et al.,1996;Rumelhart et al.,1999;Dupont-Nivet et al.,2002;Huang et al.,2009;Li et al.,2013;孙知明等,2013;Bosboom et al.,2014)等方面取得了不同程度的进展.在帕米尔弧形构造带形成模式上存在着非旋转的走滑模型(Peltzer and Tapponnier,1988)、旋转的放射状逆冲模型(Thomas et al.,1994)和马蹄形地壳弯曲模型(Yin et al.,2001)的争论.帕米尔弧形构造带西侧研究结果显示一致的旋转方向,而东侧至今新生代以来旋转变形研究尚存争论,并且东西两侧旋转变形不对称的启动时间与机制也存在分歧(Cowgill,2010;Bosboom et al.,2014).喀什凹陷是帕米尔弧形构造带北向扩展导致的挠曲沉降,沉积了巨厚的新生代地层,记录的运动过程是帕米尔弧形构造带形成模式重建的关键所在.

古地磁方法能够定量分析块体不同时间段内运动的性质及规模,并能够有效地获得大型断裂运动的时限与过程.不同学者在帕米尔弧形构造带及邻近区域开展了大量古地磁相关研究(Chen et al.,1992;Gilder et al.,1996;Rumelhart et al.,1999;Dupont-Nivet et al.,2002;Huang et al.,2009;Li et al.,2013;孙知明等,2013;Bosboom et al.,2014),主要对新生代以来帕米尔弧形构造带北向扩展过程中是否存在整体旋转运动、旋转运动的方向与幅度(Chen et al.,1992;Gilder et al.,1996;Rumelhart et al.,1999),以及对帕米尔高原的演化模式进行探讨(Li et al.,2013;Bosboom et al.,2014).已有研究由于研究对象时代、位置等不同的原因造成较大分歧.喀什凹陷北端的结果显示其相对于欧亚大陆以及华北板块发生了显著的逆时针旋转(Huang et al.,2009;孙知明等,2013),认为是由于喀什凹陷与塔里木地块之间解耦造成的结果(Huang et al.,2009).

帕米尔弧形构造带东北缘的喀什凹陷是否存在晚新生代以来整体逆时针旋转直接影响西构造结构造模式重建.本文以古地磁方法为主要手段,选择喀什凹陷南缘构造相对简单的英吉沙背斜上新世沉积地层为研究对象,避免了受多期构造的叠加影响.根据获得的可靠古地磁极,结合已有科学数据和研究成果,分析帕米尔弧形构造带东北缘晚新生代以来旋转运动方式与幅度,以讨论帕米尔弧形构造带东北缘晚新生代以来运动过程.

2 地质背景与样品采集

帕米尔弧形构造带位于印-亚碰撞带的西端,北以南倾的主帕米尔逆冲断裂带为界(Sobel et al.,2013).在早新生代,主帕米尔逆冲断裂北向位移近300 km,调节了塔里木—塔吉克斯坦盆地基底的南向俯冲(胡建中等,2008).至中新世早期,受持续的北向挤压,主帕米尔断裂逆冲带抵达天山,与天山发生碰撞(Yang et al.,2015),此时塔里木盆地由内海逐渐演化为独立的盆地(Wei et al.,2013).上新世时,帕米尔周缘断裂逆冲带发生强烈的逆冲,对已形成的盆地结构产生了重要的改造(Wei et al.,2013),形成了许多断裂带、褶皱带以及由它们分割而形成的地块等复杂的地质构造.

帕米尔东北缘是塔里木盆地西部两大沉积中心之一——喀什凹陷,该凹陷西南以北帕米尔逆冲断裂为界,北部以南天山逆冲断裂为界,向东通常被认

图1 研究区域遥感影像及构造简图
TFF,塔拉斯—费尔干纳断裂; STSTF,南天山南缘逆冲断裂带; NPTF,帕米尔北缘主断裂; KYTS,喀什—叶城右旋走滑断裂系统; YDMF,羊大曼断裂; SLBYF,色力布亚断裂; KRKMF,喀喇昆仑断裂; TKLKF,铁克里克逆冲断裂; KXWF,康西瓦断裂.
①孙知明等,2013;②Huang et al.,2009;③本文数据;④Li et al.,2013;⑤Dupont-Nivet et al.,2002.
Fig.1 Topographic and simplified tectonic map of study area and surrounding region
TFF,Talas Fergana Fault; STSTF,South Tian Shan Thrust Fault; NPTF,North Pamir Thrust Fault; KYTS,Kashi-Yecheng Transfer System; YDMF,Yangdaman Fault; SLBYF,Serikbuya Fault; KRKMF,Karakorum Fault; TKLKF,Tiklik Fault; KXWF,Kengxiwar Fault. ①Sun et al.,2013;②Huang et al.,2009;③this paper;④Li et al.,2013;⑤Dupont-Nivet et al.,2002.

为以羊大曼断裂为界同麦盖提斜坡相拆离(Huang et al.,2009;Wei et al.,2013)(图1).喀什凹陷南部和北部分别发育西昆仑北缘褶皱冲断带和南天山南缘褶皱冲断带,它们具有不同的构造特征.南天山南缘褶皱冲断带南北分带,东西分段,东段变形一般强于西段,同时还受到塔拉斯—费尔干纳断裂的影响(罗金海等,2004;李江海等,2007).受帕米尔构造结大幅度北向推移、旋转的影响,西昆仑北缘褶断带及其周缘呈弧形展布,造山带的持续挤压使前陆冲断带在前陆盆地的基底隆起与凹陷区深浅部构造的变形样式、格局和位移量等方面产生差异(曲国胜等,2005),造成此地区呈现出明显的构造分段性(曲国胜等,2005;胡建中等,2008;程晓敢等,2012).不同学者对其构造分段的划分略有不同,根据构造变形特点、构造样式差异,可将塔西南山前冲断带分为苏盖特—英吉沙—阿克陶构造单元等多个构造带(李康,2014).

本文选择在英吉沙背斜(图2)进行古地磁的样品采集.背斜位于喀什凹陷的南部,属西昆仑山前冲断带苏盖特—英吉沙—阿克陶构造带(胡建中等,2008;程晓敢等,2012;李康,2014).其背斜宽缓,东西长约60~70 km,南北宽约5~8 km,呈NWW—SEE走向.背斜核部出露阿图什组,虽然具体顶底年龄不同剖面存在不一致,但整体属于上新统(陈杰等,2000;Chen et al.,2002;郑洪波等,2002),在背斜南北两翼,阿图什组地层与第四系之间呈不整合接触.采样剖面为阿图什组(图3a),露头出露良好,岩性多为红褐色、灰色、灰褐色粉砂岩(图3b、3c)并夹有中厚层砂砾岩(图3d).用便携式手提钻机共采集11个采点111块样品,然后在室内加工成标准古地磁样品.

图2 英吉沙背斜地质简图(据Fu et al.,2010)
Fig.2 Simplified geologic map of Yengisar anticline (modified after Fu et al.,2010)

图3 野外采样照片
(a) 远观英吉沙背斜出露的上新世阿图什组; (b)(c) 采样剖面,岩性为灰色、灰褐色泥岩、粉砂岩; (d) 阿图什组中夹有的中厚层砂砾岩.
Fig.3 Photos in study area (a) Artux Formation in Yengisar anticline; (b)(c) Sections of sampling sites, gray-brown, gray mudstone/siltstone; (d) Thin- to medium-bedded sandstone interlayered with mudstone/siltstone, Artux Formation.

3 测试与分析

古地磁样品的系统剩磁测试均在国土资源部古地磁与古构造重建重点实验室2G-755R超导磁力仪上进行,样品的系统热退磁处理是利用美制TD-48大型热退磁炉完成,控温精度达到±1 ℃.样品的热退磁处理和剩磁测试均在磁屏蔽空间中进行,以避免地磁场及外界环境磁场(例如附近大型电力等设备、管道等)对样品测试数据的影响.所有的样品均经过了系统热退磁处理,从室温至680 ℃经过12~16步,低温间隔为60 ℃或80 ℃,高温间隔为15 ℃.样品的剩磁分量首先利用主向量法(Kirschvink, 1980)求得每个样品的特征剩磁分量,然后以采样点为单位进行Fisher统计分析(Fisher,1953),数据处理采用Enkin(1994)提供的古地磁分析软件,相关古地磁数据分析与成图利用了PaleoMac6.2软件(Cogné,2003).

退磁结果表明,大部分样品具有单一分量的特征.图4给出了代表样品的系统热退磁矢量正交投影图、衰减曲线及相应的等面积投影图.由图可以看出样品的解阻温度在680 ℃左右,表明其载磁矿物均为赤铁矿.

最后,获得了10个采点的较可靠的古地磁特征方向(图5、表1),其中8个负极性2个正极性方向,并通过了C级倒转检验.采点YJ5由于样品加工过程出现问题导致样品不够规则放弃测试.采样点虽然分布于褶皱两翼,由于地层产状较缓,不能满足开展褶皱检验的条件.这一特征剩磁分量很可能代表了英吉沙地区上新世沉积岩原生特征剩磁方向.其结果为Dg=342.4°,Ig=59.2°,κg=32.3,α95=8.6°;Ds=352.4°,Is=49.9°,κs=59.1,α95=6.3°,相对应的古地磁极位置为:79.7°N,295.9°E,dp=5.6°,dm=8.4°,α95=6.9°.

图4 代表样品系统热退磁的天然剩磁强度Z 矢量图(a)、衰减曲线(b)及等面积投影图(c)
Fig.4 Zijderveld vector diagrams (a), decay curve (b) and Equal-area plots (c) for representative specimens of thermal demagnetizations of NRM

表1 英吉沙上新世沉积岩古地磁测试结果

Table 1 Palaeomagnetic results from Pliocene sedimentary in Yengisar

采点号坐标纬度经度地层产状n/NDg(°)Ig(°)Ds(°)Is(°)κg/κsα95g/α95s(°)YJ138°52'59.80″N76°18'3.10″E166°∠9°10/10168.0-47.7160.0-55.518.611.5YJ238°53'0.70″N76°18'2.60″E177°∠11°7/10179.7-50.8173.2-59.849.68.7YJ338°53'1.90″N76°18'2.60″E177°∠11°8/8175.9-43.8170.3-52.518.713.1YJ438°53'4.20″N76°17'59.60″E203°∠10°9/10171.9-48.1164.5-56.324.210.7YJ538°50'36.40″N76°24'52.10″E25°∠17°0/0YJ638°50'32.90″N76°25'6.80″E30°∠16°7/10142.5-54.6159.3-46.319.014.2YJ738°50'49.70″N76°25'9.60″E18°∠23°8/9338.672.0359.651.4402.82.8YJ838°50'49.70″N76°25'9.60″E25°∠24°9/11332.564.1355.345.544.07.8YJ938°51'8.80″N76°25'5.20″E24°∠31°9/10154.5-69.5182.5-43.344.87.8YJ1038°51'8.80″N76°25'5.20″E24°∠31°8/10110.4-75.7177.1-57.017.113.9YJ1138°53'48.60″N76°21'52.00″E25°∠33°8/9159.9-56.1178.2-28.827.710.7平均342.459.2352.449.932.38.659.16.3

注:表中n为可获得稳定剩磁的样品数,N为测量样品数;Dg/Ds为地层校正前/后的磁偏角;Ig/Is为地层校正前/后的磁倾角;κg/κs为地层校正前/后的平均方向的精度参数;α95g/α95s为地层校正前/后平均方向的95%置信圆锥半顶角.

图5 英吉沙地区上新世沉积岩特征剩磁分量赤平投影图
(五角星代表样品平均方向的位置;实心圆、空心圆分别代表上、下球面投影)
Fig.5 Equal-area stereographic projection of high temperature component from the Yengisar in geographic (left) and stratigraphic (right) coordinates. Lower (upper) hemisphere directions are marked with closed (open) symbols

4 讨论与结论

4.1 帕米尔东北缘构造旋转分析

本文获得了英吉沙地区上新世可靠的古地磁结果,为进一步研究帕米尔东北缘运动形式与过程,根据研究区域及邻区晚新生代已有古地磁结果(表2),分析各个剖面结果代表的构造旋转特征(图6).显然,本文的结果同前人(Huang et al.,2009;孙知明等,2013)在喀什凹陷的北部(乌恰、喀什、阿图什等地)所获得的新近纪古地磁结果比较一致,相对于欧亚大陆皆表现为明显的逆时针旋转,说明帕米尔东北缘存在显著的逆时针旋转运动.

这种旋转是局部的构造旋转还是盆地规模的区域性系统的旋转?为此,我们参照了来自新生代帕米尔和塔里木盆地内部相对较老一些地层的古地磁结果.结果显示该地区齐姆根剖面时代较为老的古地磁极未发生明显的旋转(Li et al.,2013),齐姆根剖面位于叶城凹陷和喀什凹陷之间的齐姆根构造结,晚新生代以来构造活动强烈(李康,2014),即使没有受到重磁化的影响(Bosboom et al.,2014),也难以将其数据作为整个盆地运动模式的有力证据.再同塔里木盆地内部的数据相比较,Dupont-Nivet等(2002)在麻扎塔格地区得到了明显的顺时针旋转的结果,并将其归因于局部的旋转(Dupont-Nivet et al.,2002).本文认为,喀什凹陷的逆时针旋转没有延伸到塔里木盆地内部,只在帕米尔东北缘存在.

4.2 构造意义

4.2.1 帕米尔东北缘运动特征

作为塔里木盆地的二级构造单元(王步清等,2009),喀什凹陷北缘属于南天山南缘逆冲断裂带,西南缘为喀什叶城走滑断裂系统.其东缘以大型隐伏右旋走滑羊大曼断裂为界,并同麦盖提斜坡相拆离(Huang et al.,2009;Wei et al.,2013).前人的古地磁结果认为喀什凹陷北缘经历了明显的逆时针旋转运动(Huang et al.,2009;孙知明等,2013),孙知明等(2013)认为可能与塔拉斯—费尔干纳断裂新生代以来的右旋走滑作用有关,Huang等(2009)则强调这种现象是整个凹陷自晚上新世以来发生了刚性的逆时针旋转的结果.

本文研究区域位于喀什凹陷的南部,而一般认为塔拉斯—费尔干纳断裂南向延伸终止于南天山南缘褶皱冲断带(罗金海等,2004;李江海等,2007),并未对凹陷南部属于西昆仑北缘褶皱断裂带的英吉沙地区产生影响,故英吉沙地区的逆时针旋转用喀什凹陷整体旋转的模型解释更为合理.现代GPS观测结果也显示(Gan et al.,2007;Zubovich et al.,2010),整个塔里木盆地的西缘表现出比较一致的北北西向的物质运移,从现代地壳变形的角度支持发生逆时针旋转的趋势,这与本文认为的上新世以来该区经历逆时针旋转运动是一致的.

表2 英吉沙及邻区古地磁结果

Table 2 Palaeomagnetic poles from Yengisar and adjacent region

地区时代位置Long(°E)Lat(°N)采点数/样品数古地磁极位置φ(°E)λ(°N)α95(°)参考极(Europe)(BesseandCourtillot,2002)时代(Ma)φ(°E)λ(°N)α95(°)相对参考极旋转量资料来源英吉沙N276.338.8810295.979.76.95172.086.32.6-12.3±6.4本次研究齐姆根E276.4838.59221.4645.640160.278.87.3-0.9±8.1(Lietal.,2013)齐姆根E376.4838.59217.5644.630183.481.65.36.9±5.9(Lietal.,2013)齐姆根N176.4838.58244.572.66.920149.781.44.5-7.0±7.0(Lietal.,2013)阿尔塔什E376.438.1210.566.84.530183.481.65.37.7±5.9(Rumelhartetal.,1999)麻扎塔格N180.538.555211.659.56.220149.781.44.512.8±6.5(Dupont-Nivetetal.,2002)喀什北N276.039.611279.671.86.55172.086.32.6-12.5±5.1(Huangetal.,2009)阿图什北N276.139.811302.173.56.95172.086.32.6-18.1±6.2(Huangetal.,2009)阿图什北N176.139.89318.871.88.220149.781.44.5-29.7±8.2(Huangetal.,2009)乌恰N174.639.815291.172.48.120149.781.44.5-22.6±7.9(Huangetal.,2009)喀什N76.039.68302.368.48.920149.781.44.5-27.9±8.4(孙知明等,2013)乌恰E275.039.65311.177.114.740160.278.87.3-27.1±14.5(孙知明等,2013)

图6 塔里木盆地晚新生代古地磁极等面积投影图
Fig.6 Equal-area stereographic projections of the Late Cenozoic paleomagnetic pole in Tarim Basin

4.2.2 羊大曼断裂的右旋走滑

喀什凹陷东缘以羊大曼断裂为界,同麦盖提斜坡相拆离(Huang et al.,2009;Wei et al.,2013).因为羊大曼断裂为一隐伏大型右旋走滑断裂,对其断裂特征的研究主要局限于地震剖面的解译,其规模、性质、活动时间等特征争议较大(肖安成等,1995;胡望水等,1997;Wei et al.,2013;李康,2014).肖安成等(1995)认为羊大曼断裂北起喀什羊大曼乡,呈SSE走向延伸大约40~50 km,具有两期活动特征,早期为压扭性,代表着印支期和喜马拉雅早期的变形特征,形成正花状构造;晚期为张扭性,为喜马拉雅晚期的变形特征,形成负花状构造.胡望水等(1997)认为羊大曼断裂是喜马拉雅运动末期张扭性应力场的产物.Wei等(2013)研究表明羊大曼断裂向南延伸至莎车境内,故又被称为莎车—羊大曼断裂,根据断裂两侧的阿图什组地层没有表现出明显的厚度变化,认为在上新世时可能已经停止走滑活动.

在该研究区域,5 Ma左右北帕米尔同南天山实现了硬对接和完全碰撞(李康,2014),使得喀什叶城右旋走滑系统(KYTS)北端受限制,沿着盆山边界的走滑作用减弱(Sobel et al.,2011),变形开始楔入现今盆地的内部并表现出强烈的压扭性特点,致使帕米尔东北缘喀什凹陷物质北北西向运动,同时英吉沙背斜逐渐形成.

本文所得古地磁数据结合前人结果表明羊大曼断裂伴随着喀什凹陷的整体北北西向运动,在上新世之后经历了右行走滑活动.此结果同最近野外地质地貌调查(Fu et al.,2010;李康,2014)、DEM影像分析、地震剖面的解译(李康,2014)所得结论较为一致.根据生长地层(刘胜等,2004;李康,2014)、磁性地层(陈杰等,2000;Chen et al.,2002;郑洪波等,2002)的年龄以及背斜带同断裂带斜交的地貌特征进行判断,英吉沙背斜的形成与羊大曼断裂的走滑作用是在西域组沉积时期即早更新世同时启动的.

4.2.3 帕米尔东北缘中—上新世的构造体制转折

帕米尔构造结地质演化的运动学模型经过了几十年的研究(陈汉林等,2014),由最初的走滑模型(Peltzer and Tapponnier,1988)发展为径向逆冲模型(Thomas et al.,1994)、马蹄形弯曲模型(Yin et al.,2001),后Cowgill(2010)提的走滑与径向的结合模型.因为区域规模广,地质演化复杂,无论哪种模型都不能较好地将此区域的空间演化和时间演化特征统一起来.帕米尔构造结西侧长期以来显著的逆时针旋转运动是帕米尔弧形构造带北向发展过程中形成的系列逆冲构造变形结果(Sobel et al.,2013),东侧旋转运动则不同,不同时期、不同区域存在不同方向不同幅度的旋转运动.帕米尔弧形构造带东西两侧发育的不同性质的断裂系统导致了两侧不同的旋转特征.

最近Bosboom等(2014)结合古地磁学证据,将帕米尔东西两翼分别讨论,并以早中新世为时间节点分阶段进行阐述,一定程度上弥补了前人提出的模型的缺陷,但也无法解释帕米尔东缘KYTS在5—3 Ma活动减弱或已停止的现象(Sobel et al.,2011).本文的数据对Bosboom等(2014)所提出的最新模型进行了制约和完善,不支持中新世以来帕米尔东缘一直经历右旋走滑的结论,而是认为中—上新世界限附近发生了构造体制的转折(Thompson et al.,2015).

结合喀什凹陷北部地区已有数据,认为塔里木盆地西缘上新世时经历了外围造山带的强烈逆冲(Wei et al.,2013), 喀什凹陷在上新世之后整体发生了逆时针旋转运动.英吉沙背斜的形成,羊大曼断裂的走滑作用,帕米尔东北缘的逆时针旋转,是帕米尔弧形构造带东缘构造演化体制转折的地质过程记录.

致谢 感谢审稿人与编辑提出的建设性意见,使得文章结构与讨论得以完善.

References

Besse J, Courtillot V. 2002. Apparent and true polar wander and the geometry of the geomagnetic field over the last 200 Myr. Journal of Geophysical Research: Solid Earth (1978—2012), 107(B11): EPM 6-1-EPM 6-31.

Bosboom R, Dupont-Nivet G, Huang W T, et al. 2014. Oligocene clockwise rotations along the eastern Pamir: Tectonic and paleogeographic implications. Tectonics, 33(2): 53-66.

Chen H L, Zhang F F, Cheng X G, et al. 2010. The deformation features and basin-range coupling structure in the northeastern Pamir tectonic belt. Chinese Journal of Geology (in Chinese), 45(1): 102-112.

Chen H L, Chen S Q, Lin X B. 2014. A review of the Cenozoic Tectonic evolution of Pamir syntax. Advances in Earth Science (in Chinese), 29(8): 890-902.

Chen J, Yin J H, Qu G S, et al. 2000. Timing, lower boundary, genesis, and deformation of Xiyu formation around the western margins of the Tarim basin. Seismology and Geology (in Chinese), 22(S1): 104-116. Chen J, Burbank D W, Scharer K M, et al. 2002. Magnetochronology of the Upper Cenozoic strata in the Southwestern Chinese Tian Shan: rates of Pleistocene folding and thrusting. Earth and Planetary Science Letters, 195(1-2): 113-130.

Chen J, Li T, Li W Q, et al. 2011. Late Cenozoic and present tectonic deformation in the pamir salient, northwestern China. Seismology and Geology (in Chinese), 33(2): 241-259. Chen Y, Cogné J P, Courtillot V. 1992. New Cretaceous paleomagnetic poles from the Tarim Basin, northwestern China. Earth and Planetary Science Letters, 114(1): 17-38.Cheng X G, Huang Z B, Chen H L, et al. 2012. Fault characteristics and division of tectonic units of the thrust belt in the front of the West Kunlun Mountains. Acta Petrologica Sinica (in Chinese), 28(8): 2591-2601.

Cogné J P. 2003. PaleoMac: a MacintoshTM application for treating paleomagnetic data and making plate reconstructions. Geochemistry, Geophysics, Geosystems, 4(1),doi:10.1029/2001GC000227. Cowgill E. 2010. Cenozoic right-slip faulting along the eastern margin of the Pamir salient, northwestern China. Geological Society of America Bulletin, 122(1-2): 145-161.

Dupont-Nivet G, Guo Z, Butler R F, et al. 2002. Discordant paleomagnetic direction in Miocene rocks from the central Tarim Basin: evidence for local deformation and inclination shallowing. Earth and Planetary Science Letters, 199(3-4): 473-482.

Enkin R. 1994. A computer program package for analysis and presentation of paleomagnetic data. Sidney: Pacific Geoscience Centre, Geological Survey of Canada, 16.

Fisher R. 1953. Dispersion on a sphere. Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences, 217(1130): 295-305. Fu B H, Ninomiya Y, Guo J M. 2010. Slip partitioning in the northeast Pamir-Tian Shan convergence zone. Tectonophysics, 483(3-4): 344-364.

Gan W J, Zhang P Z, Shen Z K, et al. 2007. Present-day crustal motion within the Tibetan Plateau inferred from GPS measurements. Journal of Geophysical Research: Solid Earth (1978—2012), 112(B8): B08416.

Gilder S, Zhao X X, Coe R, et al. 1996. Paleomagnetism and tectonics of the southern Tarim basin, northwestern China. Journal of Geophysical Research: Solid Earth (1978—2012), 101(B10): 22015-22031.

He J K, Lu S J, Wang W M. 2013. Three-dimensional mechanical modeling of the GPS velocity field around the northeastern Tibetan plateau and surrounding regions. Tectonophysics, 584: 257-266.

Hu J Z, Tan Y J, Zhang P, et al. 2008. Structural features of Cenozoic thrust-fault belts in the piedmont of southwestern Tarim basin. Earth Science Frontiers (in Chinese), 15(2): 222-231.

Hu W S, Chen Y S, Xiao A C, et al. 1997. Structural features of major fault zones in the southwest depression in Tarim basin and their control on oil accumulation. Xinjiang Petroleum Geology (in Chinese), 18(3): 201-207.

Huang B C, Piper J D A, Zhu R X. 2009. Paleomagnetic constraints on neotectonic deformation in the Kashi depression of the western Tarim Basin, NW China. International Journal of Earth Sciences, 98(6): 1469-1488.

Kirschvink J L. 1980. The least-squares line and plane and the analysis of palaeomagnetic data. Geophys. J. Int., 62(3): 699-718. Lei J S, Zhou H L, Zhao P D, et al. 2002. 3-D velocity structure of p-wave in the crust and upper-mantle beneath pamir and adjacent region. Chinese J. Geophys. (in Chinese), 45(6): 802-811. Li K. 2014. Late Cenozoic tectonic and sedimentary evolution of the NE Pamir [Ph. D. thesis] (in Chinese). Hangzhou: University of Zhejiang.

Li J H, Cai Z Z, Luo C S, et al. 2007. The structural transfer at the southern end of talas-ferghana fault and its regional tectonic response in the Cenozoic. Acta Geologica Sinica (in Chinese), 81(1): 23-31.

Li Z Y, Ding L, Lippert P C, et al. 2013. Paleomagnetic constraints on the Cenozoic kinematic evolution of the Pamir plateau from the Western Kunlun Shan foreland. Tectonophysics, 603: 257-271.

Liu S, Wang X, Wu X Q, et al. 2004. Growth strata and the deformation time of the late Cenozoic along front belts of Pamir-western Kunlun-southwest Tianshan in China. Acta Petrolei Sinica (in Chinese), 25(5): 24-28.

Luo J H, Zhou X Y, Qiu B, et al. 2004. Controls of talas-ferghana fault on Kashi sag, Northwestern Tarim Basin. Xinjiang Petroleum Geology (in Chinese), 25(6): 584-587. Pei J L, Sun Z M, Li H B, et al. 2008. Paleocurrent direction of the Late Cenozoic sedimentary sequence of the Tibetan Plateau northwestern margin constrained by AMS and its tectonic implications. Acta Petrologica Sinica (in Chinese), 24(7): 1613-1620.

Peltzer G, Tapponnier P. 1988. Formation and evolution of strike-slip faults, rifts, and basins during the India-Asia collision: An experimental approach. Journal of Geophysical Research: Solid Earth (1978—2012), 93(B12): 15085-15117.Qu G S, Li Y G, Li Y F, et al. 2005. Tectonic segmentation and its origin of southwestern Tarim foreland basin. Science in China (Series D) (in Chinese), 35(3): 193-202.

Rumelhart P E, Yin A, Cowgill E, et al. 1999. Cenozoic vertical-axis rotation of the Altyn Tagh fault system. Geology, 27(9): 819-822.

Sobel E R, Schoenbohm L M, Chen J, et al. 2011. Late Miocene-Pliocene deceleration of dextral slip between Pamir and Tarim: Implications for Pamir orogenesis. Earth and Planetary Science Letters, 304(3-4): 369-378.

Sobel E R, Chen J, Schoenbohm L M, et al. 2013. Oceanic-style subduction controls late Cenozoic deformation of the Northern Pamir orogen. Earth and Planetary Science Letters, 363: 204-218.

Sun Z M, Li H B, Pei J L, et al. 2013. Paleomagnetic study of Cenozoic sediments from western Kunlun-Pamir and its tectonic implications. Acta Petrologica Sinica (in Chinese), 29(9): 3183-3191.

Tang M S, Zheng Y, Ge C, et al. 2014. Study on crustal structure in the northeastern Pamir region by P receiver functions. Chinese J. Geophys. ( in Chinese), 57(10): 3176-3188, doi: 10.6038/cjg20141007.

Thomas J C, Chauvin A, Gapais D, et al. 1994. Paleomagnetic evidence for Cenozoic block rotations in the Tadjik depression (Central Asia). Journal of Geophysical Research, 99(B8): 15141-15160.

Thompson J A, Burbank D W, Li T, et al. 2015. Late Miocene northward propagation of the northeast Pamir thrust system, northwest China. Tectonics, 34(3): 510-534.

Wang B Q, Huang Z B, Ma P L, et al. 2009. Establishment of division standard, evidence and principle of structural units in Tarim Basin. Geotectonica et Metallogenia (in Chinese), 33(1): 86-93.

Wei H H, Meng Q R, Ding L, et al. 2013. Tertiary evolution of the western Tarim basin, northwest China: A tectono-sedimentary response to northward indentation of the Pamir salient. Tectonics, 32(3): 558-575. Xiao A C, Chen Y S, Hu W S, et al. 1995. Structural type of southwest depression, Tarim basin. Xinjiang Petroleum Geology (in Chinese), 16(2): 102-108.

Xu Y, Liu J H, Liu F T, et al. 2006. Crustal velocity structure and seismic activity in the Tianshan-Pamir conjunctive zone. Chinese J. Geophys. (in Chinese), 49(2): 469-476.Yang W, Dupont-Nivet G, Jolivet M, et al. 2015. Magnetostratigraphic record of the early evolution of the southwestern Tian Shan foreland basin (Ulugqat area), interactions with Pamir indentation and India-Asia collision. Tectonophysics, 644-645: 122-137. Yin A, Robinson A C, Manning C E. 2001. Oroclinal bending and slab-break-off causing coeval east-west extension and east-west contraction in the Pamir-Nanga Parbat syntaxis in the past 10 m.y.∥ AGU Fall Meeting Abstracts. AGU.

Zhang X K, Zhao J R, Zhang C K, et al. 2002. Crustal structure at the northeast side of the Pamirs. Chinese J. Geophys. (in Chinese), 45(5): 665-671. Zheng H B, Powell C M, An Z S, et al. 2000. Pliocene uplift of the northern Tibetan Plateau. Geology, 28(8): 715-718.

Zheng H B, Chen H Z, Jin H L, et al. 2002. Magnetostratigraphic evidence for the Pliocene-early Pleistocene uplift of the northern Tibetan plateau. Marine Geology & Quaternary Geology (in Chinese), 22(2): 57-62.

Zubovich A V, Wang X Q, Scherba Y G, et al. 2010. GPS velocity field for the Tien Shan and surrounding regions. Tectonics, 29(6),doi: 10.1029/2010TC002772.

附中文参考文献

陈汉林, 张芬芬, 程晓敢等. 2010. 帕米尔东北缘地区构造变形特征与盆山结构. 地质科学, 45(1): 102-112.

陈汉林, 陈沈强, 林秀斌. 2014. 帕米尔弧形构造带新生代构造演化研究进展. 地球科学进展, 29(8): 890-902.

陈杰, 尹金辉, 曲国胜等. 2000. 塔里木盆地西缘西域组的底界、时代、成因与变形过程的初步研究. 地震地质, 22(S1): 104-116.

陈杰, 李涛, 李文巧等. 2011. 帕米尔构造结及邻区的晚新生代构造与现今变形. 地震地质, 33(2): 241-259.

程晓敢, 黄智斌, 陈汉林等. 2012. 西昆仑山前冲断带断裂特征及构造单元划分. 岩石学报, 28(8): 2591-2601.

胡建中, 谭应佳, 张平等. 2008. 塔里木盆地西南缘山前带逆冲推覆构造特征. 地学前缘, 15(2): 222-231.

胡望水, 陈毓遂, 肖安成等. 1997. 塔西南坳陷主要断裂带构造特征及其控油作用. 新疆石油地质, 18(3): 201-207.

雷建设, 周蕙兰, 赵大鹏. 2002. 帕米尔及邻区地壳上地幔P波三维速度结构的研究. 地球物理学报, 45(6): 802-811.

李康. 2014. 帕米尔东北缘晚新生代构造与沉积演化[博士论文]. 杭州: 浙江大学.

李江海, 蔡振忠, 罗春树等. 2007. 塔拉斯—费尔干纳断裂带南端构造转换及其新生代区域构造响应. 地质学报, 81(1): 23-31.

刘胜, 汪新, 伍秀芳等. 2004. 塔西南山前晚新生代构造生长地层与变形时代. 石油学报, 25(5): 24-28.

罗金海, 周新源, 邱斌等. 2004. 塔拉斯—费尔干纳断裂对喀什凹陷的控制作用. 新疆石油地质, 25(6): 584-587.

裴军令, 孙知明, 李海兵等. 2008. 青藏高原西北缘晚新生代沉积岩古流向的磁化率各向异性确定及其构造意义. 岩石学报, 24(7): 1613-1620.

曲国胜, 李亦纲, 李岩峰等. 2005. 塔里木盆地西南前陆构造分段及其成因. 中国科学(D辑: 地球科学), 35(3): 193-202.

孙知明, 李海兵, 裴军令等. 2013. 帕米尔—西昆仑地区新生代古地磁结果及其构造意义. 岩石学报, 29(9): 3183-3191.

唐明帅, 郑勇, 葛粲等. 2014. 帕米尔东北缘地壳结构的P波接收函数研究. 地球物理学报, 57(10): 3176-3188, doi: 10.6038/cjg20141007.

王步清, 黄智斌, 马培领等. 2009. 塔里木盆地构造单元划分标准、依据和原则的建立. 大地构造与成矿学, 33(1): 86-93.

肖安成, 陈毓遂, 胡望水等. 1995. 塔里木盆地西南坳陷的构造类型. 新疆石油地质, 16(2): 102-108.

胥颐, 刘建华, 刘福田等. 2006. 天山—帕米尔结合带的地壳速度结构及地震活动研究. 地球物理学报, 49(2): 469-476.

张先康, 赵金仁, 张成科等. 2002. 帕米尔东北侧地壳结构研究. 地球物理学报, 45(5): 665-671.

郑洪波, 陈惠忠, 靳鹤龄等. 2002. 上新世—早更新世青藏高原北缘隆升的磁性地层学证据. 海洋地质与第四纪地质, 22(2): 57-62.

(本文编辑 何燕)

基金项目 国家自然科学基金面上项目(41172177)资助.

作者简介 周在征,男,1989年生,硕士研究生,构造地质学专业. E-mail:zzzheng8023@gmail.com *通讯作者 裴军令,男,副研究员,主要从事区域构造地质与古地磁学研究工作. E-mail:peijunling@yeah.net

doi:10.6038/cjg20160220 中图分类号 P318,P542

收稿日期2015-05-04,2015-08-11收修定稿

New evidence for rotation of Northeastern Pamir since Late Cenozoic

ZHOU Zai-Zheng1,2,3,PEI Jun-Ling1,2*,LI Jian-Feng1,LIU Feng1,SHENG Mei1,2,ZHAO Yue1

1 Institute of Geomechanics, Chinese Academy of Geological Sciences, Beijing 100081, China2 Key Laboratory of Paleomagnetism and Tectonic Reconstruction of Ministry of Land and Resources, Beijing 100081, China3 School of Earth Sciences and Resources, China University of Geosciences (Beijing), Beijing 100083, China

Abstract The Pamir-western Himalayan syntaxis lies at the western end of the India-Asia collision zone and is bounded by the Main Pamir Thrust to the north, and the Main Boundary Thrust and Main Frontal Thrust to the south. To facilitate the study on the deformation history of the northeastern Pamir in response to the India-Asia collision, paleomagnetic samples were collected from 11 sites in the Pliocene sedimentary rock adjacent to the western Kunlun mountains. A stable magnetic component was isolated by stepwise thermal demagnetization of 111 samples from this section, which is characterized by a positive C-class reversal test. The mean direction of residual magnetism is Dg=342.4°, Ig=59.2°, κg=32.3,α 95=8.6°; Ds=352.4°, Is=49.9°, κs=59.1,α95=6.3°,corresponding to a paleopole at λp=79.7°N, φp=295.9°E, dp=5.6°, dm=8.4°, α95=6.9°.

周在征, 裴军令, 李建锋等. 2016. 帕米尔东北缘晚新生代旋转运动新证据.地球物理学报,59(2):633-642,doi:10.6038/cjg20160220.

Zhou Z Z, Pei J L, Li J F, et al. 2016. New evidence for rotation of Northeastern Pamir since Late Cenozoic. Chinese J. Geophys. (in Chinese),59(2):633-642,doi:10.6038/cjg20160220.

相关搜索